Abstract:
A printer includes a photosensitive drum which is exposed by a line head which includes a fluorescent head having a large number of light points which are aligned in a direction of a width of the photosensitive drum, and the respective light points of the fluorescent head are driven by a line driver in accordance with drive data from a shift register which holds the drive data for all the light points. One print line is formed by a set of four sublines. In a case where the thinning of a line width is corrected in a main scanning direction, the print line is formed by sublines more than five, whereby the line width is fatted.
Abstract:
The invention is directed to a method of printing on a print medium wherein a relocation error is induced in a paper transport system so as to randomize, bias, or redistribute harmonic errors associated with the paper transport system. The print medium is advanced in the ink jet printer in an advance direction to a registration location using the paper transport system. A first subset of an addressable set of ink emitting orifices in the printhead are used to print on the print medium at the registration location. The print medium is then moved in a reverse direction a predetermined distance. The print medium is again advanced in the advance direction and relocated at the registration location using the paper transport system. A second subset of the addressable set of ink emitting orifices in the printhead are used to print on the relocated print medium at the registration location.
Abstract:
A method and apparatus for detecting a scanning light beam used for writing onto a media. A detector is disposed in the scanning path for sending a signal to a first amplifier. A second amplifier is provided for providing a feed back loop to the first amplifier so as to maintain the first amplifier a predetermined level. A time delay circuit provided between the output of the second amplifier and first amplifier for delaying the signal from said second amplifier to said positive input of said first amplifier such that the output of the first amplifier is forced to a predetermined value when no signal is being produced by the detector.
Abstract:
A light beam scanning apparatus for recording an image on a photosensitive material by scanning with an light beam having image information of the image. The apparatus includes a cylinder for holding the photosensitive material, in which the photosensitive material faces an interior of the cylinder; a light source for projecting the light beam; an image rotation optical means for transmitting the light beam projected from the light source; a driver for rotating the image rotation optical means about the central axis, in which the image rotation optical means rotates the light beam projected from the light source at a rotating speed twice the rotating speed of the image rotation optical means; a light beam magnifying means for transmitting the light beam rotated by the image rotation optical means and magnifying the light beam so as to expand a diameter of the light beam; a light beam deflection means for transmitting the light beam magnified by the light beam magnifying means and changing a direction of the light beam so as to direct the light beam onto the photosensitive material; and a driver for rotating the light beam deflection means about the central axis synchronized with a rotation of the light beam so that the image is recorded on the photosensitive material by scanning with the light beam.
Abstract:
A vibration preventive system in use with an image recording apparatus of the type in which an original is scanned by reciprocatively moving an imaging unit by a stepping motor in two different types of scan modes, a forward scan mode in which an original read region is a constant speed region and a back scan mode to return the imaging unit to an original position at a high speed, the vibration preventive system comprising a drive current control for controlling a drive current fed to the stepping motor in such a way that in the constant speed region, drive current for driving the stepping motor is changed to a value smaller than that in an acceleration region. In the forward scan mode, the drive current is changed before the imaging unit reaches the registration position or after the end of acceleration in the forward scan mode. When the imaging unit is between them, the drive current is changed at a point in the undershoot of a transient vibration after the end of acceleration, or at the tail edge of the forward scan mode.
Abstract:
An additional motion is introduced into a scanning operation. This additional motion is in addition to the motion that is inherent in any document scanning operation. For example, in a flatbed scanner a linear array of scanning devices is positioned across the document in a first or “x” direction and this array is moved across the document in a perpendicular or “y” direction. In a flatbed scanner the position of the scanning devices are fixed in the “x” direction. In a drum scanner a light beam moves across the document in an “x” direction and the document is moved in the “y” direction. The light reflected from the document is directed to a fixed photoreceptor. With the present invention an additional vibratory motion is introduced into the scanning process. With a flatbed scanner the array of detector devices is moved or vibrated. The vibratory motion can for example be in the “x” direction. With a drum scanner the photoreceptor is moved or vibrated. For example the photodetector can be moved or vibrated in the “x” direction. The amount and direction of the vibratory movement can vary up to about one half the distance between units in the scanner's resolution (i.e. one half a pixel). If one is trying to eliminate Moire patterns the vibratory movement can be a pseudo random series of movements. If one is trying to introduce a special pattern into the document or to otherwise create special effects, various other type of motion can be used. Movement of the CCD array in a flatbed scanner or movement of the photoreceptor in a drum scanner can be done by a simple piezo electric transducer or by a simple mechanical cam.
Abstract:
A method of reading an image by an image sensor comprising: a) reciprocating a carriage from a predetermined position in a predetermined direction by rotating a stepping motor to which a second current value smaller than a first current value is supplied; and b) detecting whether or not the carriage after reciprocating is disposed at the predetermined position, by the sensor, wherein, in the case where the sensor detects that the carriage after reciprocating is disposed at the predetermined position, when the image sensor reads an image, the first current value is supplied to the stepping motor, and in the case where the sensor detects that the carriage after reciprocating is not disposed at the predetermined position, when the image sensor reads an image, a current value obtained by adding a third current value to the first current value is supplied to the stepping motor.
Abstract:
An image reading apparatus of the present invention can suppress an image distortion caused by the vibration of a carriage by varying at least one of the level of a current supplied to a drive motor in accordance with a variation of an environmental temperature and an acceleration distance.
Abstract:
In the present invention, an image reading apparatus and the like which is provided with a driving device (21) capable of changing its rotational speed, includes an inertial load changing device 26 for changing the inertial load of a rotating body (23) of the driving device (21). The inertial load changing device 26 includes an inertial body (27) which is adjacently disposed to the rotating body (23) and an interlock unit 28 for attaching the inertial body 27 to the rotating body 23 to create an integral rotation so as to change the inertial load of the rotating body (27). The inertial bodies is provided by single or plural number. The plural number of inertial bodies (27) is individually attached to the rotating body (23) by means of the interlock unit 28 in order to change the inertial load of the rotating body in several levels.
Abstract:
A device and process which eliminates potential moiré patterns in digitized images by employing a one-dimensional sensor array and a sampling method of the sensor signals which produces a data set of non-uniformly spaced sensor positions. This allows the spacing of the sensors to avoid having a strong “harmonic” which may interfere with details or harmonics present in the image source, which eliminates the occurrence of moiré patterns and the need for application of image processing to remove moiré patterns. Sensors are non-uniformly spaced along a first axis according to a predetermined scheme or function. Sensors are sampled during scanning according a non-uniform function in order to realize a non-uniform sampling scheme in a second dimension. Linear interpolation is applied to the non-uniformly spaced data set, synthesizing a uniformly-spaced data set for use in common imaging formats and processing.