Abstract:
The invention concerns a pad for use in scanning data stored on a flat surface, for subsequent feeding to data-processing equipment, the pad including means which can be detected by the scanner (6) and which are designed to be compared with certain scanning-process parameters, and/or a device for controlling the movements of the scanner.
Abstract:
A method of compensating for errors in scanned data is described. A pattern is printed on a record sheet using a bi-directional printer head. The printed pattern is then scanned from the record sheet using a bi-directional scanner. Error compensation factors are calculated from the bi-directionally scanned data, to be applied to subsequently scanned image data to compensate for a bi-directional position error of the scanned image data.
Abstract:
The present invention relates to the use of a camera and a structured light pattern is a platenless document imaging system (1) to capture the image of a page or of a bound book together with depth information that can be inferred from the light pattern. The imaging system (1) comprises a support surface (12) for a document (30) to be imaged, a light stripe projector (4) arranged to project a plurality of diverging sheets of light that extend from the projector (4) towards the support surface (12) for forming a series of stripes across the document (30), a camera (2) having a detector array (22) for capturing an image of the document (30) and of light stripes projected onto the document (30), a processor (25) arranged to receive (23) from the detector array (22) data representative of images of the document (30) and of the light stripes and to calculate therefrom a three-dimensional profile of the document (30) relative to a reference surface, characterised in that the relative divergence of adjacent sheets of light varies laterally across the sheets so that the stripes are concentrated where the divergence is relatively low.
Abstract:
A first linear sensor array (42) produces, at a first time of occurence, a first image of a segment of an object (12) as the object moves across the sensor at a variable speed. The image and its time of occurrence are accumulated in a buffer. As the object continues to move across the sensor, a successive plurality of the segment images seen by the first sensor are accumulated in the buffer, together with their respective times of occurrence. A second linear sensor array (44) spaced a distance from the first array produces, at a second time of occurrence, a second image of another segment of the moving object. The second image is compared with the accumulated first images to determine which of the accumulated first images is most similar to the second image. The object's speed S can then be estimated as an appropriately weighted function of d/(tj-tm) [i.e. S PROPORTIONAL d/(tj-tm)], where tj is the time of occurrence of a selected one of the second images and tm is the time of occurrence of the first image most similar to the selected second image. By continually monitoring the object's speed in this fashion, one may select and transfer into an image buffer those image segments which together form the highest quality image of the object, independently of the object's speed of motion past the sensor and without the need for expensive, bulky stepper motors, mechanical motion encoders, or the like.
Abstract translation:第一线性传感器阵列(42)在物体的第一时间产生物体(12)的段的第一图像,因为物体以可变速度跨越传感器。 图像及其发生时间累积在缓冲器中。 当物体继续移动穿过传感器时,由第一传感器看到的连续的多个段图像与它们各自发生的时间一起被累积在缓冲器中。 与第一阵列间隔开距离的第二线性传感器阵列(44)在出现的第二时间产生移动物体的另一段的第二图像。 将第二图像与累积的第一图像进行比较,以确定哪个累积的第一图像最接近于第二图像。 然后可以将物体的速度S估计为d /(tj-tm)的适当加权函数[即 S PROPORTIONAL d /(tj-tm)],其中tj是所选择的第二图像的出现时间,tm是与所选择的第二图像最相似的第一图像的出现时间。 通过以这种方式持续监视物体的速度,人们可以选择并转移到图像缓冲器中,这些图像段一起形成物体的最高质量的图像,而不依赖于物体通过传感器的运动速度,并且不需要昂贵的, 大型步进电机,机械运动编码器等。
Abstract:
A first linear sensor array (42) produces, at a first time of occurence, a first image of a segment of an object (12) as the object moves across the sensor at a variable speed. The image and its time of occurrence are accumulated in a buffer. As the object continues to move across the sensor, a successive plurality of the segment images seen by the first sensor are accumulated in the buffer, together with their respective times of occurrence. A second linear sensor array (44) spaced a distance from the first array produces, at a second time of occurrence, a second image of another segment of the moving object. The second image is compared with the accumulated first images to determine which of the accumulated first images is most similar to the second image. The object's speed S can then be estimated as an appropriately weighted function of d/(tj-tm) [i.e. S PROPORTIONAL d/(tj-tm)], where tj is the time of occurrence of a selected one of the second images and tm is the time of occurrence of the first image most similar to the selected second image. By continually monitoring the object's speed in this fashion, one may select and transfer into an image buffer those image segments which together form the highest quality image of the object, independently of the object's speed of motion past the sensor and without the need for expensive, bulky stepper motors, mechanical motion encoders, or the like.
Abstract:
A system for scanning and digitizing large images using a reseau for accuracy without obscuring the image to be scanned. The system uses two separate CCD photoreceptor arrays which are fixed in a rigid position with respect to each other and any accompanying lenses and mirrors. In one embodiment, a first CCD photoreceptor array is used to scan the image while the second CCD photoreceptor array simultaneously scans the reseau. In a second embodiment, a single CCD photoreceptor array is used to first scan the reseau and then to scan the image. One illumination source illuminates the reseau while second illumination source illuminates the image. The arrangement of the lens(es) and the photoreceptor arrays allows the determination of any displacement of the scanner along the X-axis, Y-axis, and Z-axis, as well as the determination of any rotation of the scanner around the X-axis, Y-axis, or Z-axis. The position and attitude of the scanner, as determined by scanning the reseau, is used to correct any errors in the resulting image that are caused by displacement or rotation of the scanner. A large image can be scanned in separate but overlapping swaths, the overlap being used to align the swaths to create a final seamless digital image from the assembled swaths.
Abstract:
본 발명은 스캐너를 탑재한 인쇄 장치에 있어서의 화상 크기 보상 방법 및 장치에 관한 것으로, 보다 상세하게는 인쇄되는 문서의 세로 길이를 제어하는 메인 모터 및 가로 길이를 제어하는 폴리건 모터를 제어하여 원본 문서와 인쇄되는 복사 문서의 크기가 동일하게 하기 위한 방법 및 장치에 관한 것이다. 이를 위하여 본 발명은 기준 문서를 스캐닝하여 출력하여 복사 문서를 생성하고, 상기 복사 문서를 재 스캐닝하여 상기 기준 문서 및 상기 복사 문서의 크기가 동일하도록 인쇄되는 문서의 크기를 상하로 제어하는 메인 모터 및 인쇄되는 문서의 크기를 좌우로 제어하는 폴리건 모터 및 상기 모터들의 속도 제어 명령을 저장하는 저장부를 포함하는 화상 형성 장치의 화상 크기 보상 방법으로서, (a) 기준 문서 및 상기 기준 문서의 복사 문서를 스캐닝하여 상기 문서들의 크기에 대한 스캔 정보를 저장하는 스캔 정보 저장 단계 및 (b) 상기 스캔 정보에 따라 상기 기준 문서와 상기 복사 문서의 크기가 동일하도록 상기 폴리건 모터의 속도 및 상기 메인 모터의 속도를 제어하는 화상 크기 보상 단계를 포함하는 것을 특징으로 한다.
Abstract:
PURPOSE: An image reading device, a method of controlling the image reading device, a control program, a storage medium, and an image forming apparatus with the image reading device are provided to sense a reference position promptly without an error and to store data of the reference position promptly when the data of the reference data is not stored in a memory unit or the data of the reference data is damaged. CONSTITUTION: An image reading device(121) includes a memory unit for storing position information of a sensor for moving by a drive unit to read an image of a document and a control unit for controlling the drive unit to move the sensor based on the position information stored in the memory unit. The control unit drives the drive unit by an amount of driving sufficient for an image reading unit to move in a predetermined direction to abut the stop members, controls the drive unit to move the sensor so as to detect the position mark, and updates the position information of the memory unit to a predetermined initial value based on the detection of the position mark by the sensor.
Abstract:
본 발명은 플랫베드 스캐너에 있어서, 각 장치별로 스캐닝 위치, 스캔 영역 및 스캔 비율을 결정하도록 함으로써, CCD모듈의 편차로 인한 스캐닝 에러를 최소화할 수 있는 스캐닝 에러 보정장치 및 방법이다. 본 발명에 따른 스캐닝 에러 보정 장치는, 플랫베드 스캐너에서의 스캐닝 에러를 보정하는 장치에 있어서, 하나의 블랙 패치가 구비되어 있는 화이트 셰이딩 플레이트; 화이트 셰이딩 플레이트와 블랙 패치를 독취할 수 있는 독취 모듈; 독취 모듈을 통해 독취된 화이트 셰이딩 플레이트에서의 블랙 패치에 대한 정보와 소정의 기준치를 비교하여 플랫베드 스캐너의 스캐닝 에러를 보정할 수 있도록 제어하는 제어부를 포함한다. 따라서, 각 플랫 베드 스캐너별로 수평 및 수직방향의 스캐닝 영역을 최대한 확보하여 CCD모듈과 같은 독취 모듈의 편차로 인해 스캐닝 된 이미지에 에러가 발생되는 것을 방지할 수 있다. 또한, 독취되는 스캔 영역의 좌우 스캔 배율과 전체 스캔 영역의 배율을 비교하여 정확하게 원하는 비율을 갖는 스캐닝 이미지를 얻을 수 있다.