Abstract:
A process for selectively hydrogenating a dinitrile to an aminonitrile is provided. The process comprises contacting a dinitrile with a hydrogen-containing fluid in the presence of a solvent comprising an alcohol or liquid ammonia, at least one metal catalyst, and a carbonyl group-containing additive such as, for example, organic amides, organic esters, salts of carboxylic acids, or urea.
Abstract:
A copolymer with recurring constituent units derived by polymerizing tetrahydrofuran, ethylene oxide and at least one additional cyclic ether that can be substituted or unsubstituted that decreases the hydrophilicity imparted to the copolymer by the ethylene oxide.
Abstract:
The present invention concerns a process for making polyester containing up to 50 percent by weight transparent recycled waste polyester by a novel equilibrium depolymerization process. The equilibrium depolymerization process of the present invention for making polyester containing transparent waste polyester comprises the steps of: 1) continuously providing a stream containing oligomers having a DP of at least about 1.5; 2) continuously feeding transparent polyester waste to an extruder; 3) continuously melting in said extruder said waste polyester; 4) continuously extruding said molten polyester into said stream containing oligomers; and 5) continuously completing the esterification creating a prepolymer mixture; and 6) continuously polymerizing said prepolymer mixture thereby producing polyester containing waste transparent polyester suitable for food grade applications. The present invention meets or exceeds the Food and Drug Administration (FDA) requirements for food contact with polyester and is thus useful in food contact applications, for example beverage containers and polyester film wrap.
Abstract:
This invention relates to a method for preparing nonwoven fabrics having an improved balance of properties in the machine and cross-directions. More specifically, the invention utilizes nonwoven webs that include relatively low levels of multiple-component fibers having latent three-dimensional spiral crimp combined with fibers that do not develop spiral crimp. The latent spiral crimp of the multiple-component fibers is activated, such as by heating, under free shrinkage conditions, after formation of the nonwoven web to achieve re-orientation of the non-spirally-crimpable fibers and an improved balance of properties such as tensile strength and modulus.
Abstract:
A method for preparing stretchable bonded nonwoven fabrics which involves forming a substantially nonbonded nonwoven web of multiple-component continuous filaments or staple fibers which are capable of developing three-dimensional spiral crimp, activating the spiral crimp by heating substantially nonbonded web under free shrinkage conditions during which the nonwoven remains substantially nonbonded, followed by bonding the crimped nonwoven web using an array of discrete mechanical, chemical, or thermal bonds. Nonwoven fabrics prepared according to the method of the current invention have an improved combination of stretch-recovery properties, textile hand and drape compared to multiple-component nonwoven fabrics known in the art.
Abstract:
An article including a woven fabric comprising warp yarns and weft yarns, wherein at least one of either the warp yarns or the weft yarns includes: (a) a corespun elastic base yarn having a denier and including staple fiber and an elastic fiber core; and (b) a separate control yarn selected from the group consisting of a single filament yarn, a multiple filament yarn, a composite yarn, and combinations thereof; having a denier greater than zero to about 0.8 times the denier of the corespun elastic base yarn; wherein the woven fabric includes (1) a ratio of corespun base yarn ends to control yarn ends of up to about 6:1; or (2) a ratio of corespun base yarn picks to control yarn picks of up to about 6:1; or (3) both a ratio of corespun base yarn ends to control yarn ends of up to about 6:1; and a ratio of corespun base yarn picks to control yarn picks of up to about 6:1.
Abstract:
A stretch article comprising: a substrate comprising a substrate material, and at least one stretch yarn comprising an elastomeric propylene-based polymer, wherein the stretch yarn is bonded to the substrate and wherein the stretch yarn is capable of being mechanically bonded directly to the substrate surface.