Abstract:
The present invention comprises a shifting unit that uses optical fibers to shift beams among various outputs. The shifting unit comprises a shifting entrance plane and a shifting exit plane. The shifting entrance plane comprises at least one row of signal input positions. Each signal input position is adapted to receive an optical signal from a source. The shifting exit plane comprises a respective number of rows of signal output positions. Each signal output position is adapted to output an optical beam. Each signal input position of a given row is connected by an optical fiber to a corresponding signal output position. Also, each optical fiber is the same length as every other optical fiber in the shifting unit. The present invention also comprises methods and apparatus comprising the shifting unit.
Abstract:
A system of classifying incoming media entering an inkjet printing mechanism identifies transparency media without requiring any special manufacturer markings. The media is first optically scanned using a blue-violet light at an initial intensity to obtain both diffuse and specular reflectance data. If useable, the data is compared with known values to classify the media so an optimum print mode tailored for the particular media is used. The early transparency detection system avoids time-consuming further steps trying to classify the media as photo media, plain paper, and the like, and facilitates fast printing of transparencies, which can be critical in the business environment when making last minute changes for a presentation. A printing mechanism constructed to implement this method is also provided.
Abstract:
A method and apparatus are provided for determining a weighted average measured reflectance parameter Rm for pixels in an image for use in integrated cavity effect correction of the image. For each pixel of interest Pi,j in the image, an approximate spatial dependent average Ai,j, Bi,j of video values in a region of W pixels by H scan lines surrounding the pixel of interest Pi,j is computed by convolving video values Vi,j of the image in the region with a uniform filter. For each pixel of interest Pi,j a result of the convolving step is used as the reflectance parameter Rm. The apparatus includes a video buffer for storing the pixels of the original scanned image, and first and second stage average buffers for storing the computed approximate spatial dependent averages Ai,j, Bi,j. First and second stage processing circuits respectively generate the first and second stage average values Ai,j, Bi,j by convolving the video values of the image in a preselected region with a uniform filter.
Abstract:
A compound of formula (I), wherein R1 and R2 are independently selected from saturated fluorocarbon substituted side chains, such as NR5(CH2)nCmF2m+1, O(CH2)nCmF2m+1, S(CH2)nCmF2m+1, NR5S(O)2(CH2)pCmF2m+1, or CR5[CO2(CH2)nCmF2m+1]2, where R5 is hydrogen or alkyl, n and m are independently an integer of 1-12, and p is 0 or an integer of 1-12, R3 is an unsaturate moiety which may be polymerised, and X is O, S or NR4 where R4 is hydrogen or alkyl, as well as methods for the preparation of these compounds. Compounds of formula (I) are useful monomers in the preparation of oil- and water-repellent polymers.
Abstract translation:式(I)化合物,其中R 1和R 2独立地选自饱和碳氟化合物取代的侧链,例如NR 5(CH 2)n C m F 2 m + 1,O(CH 2)n C m F 2 m + 1,S(CH 2)n C m F 2 m + 1,NR 5 S O)2(CH2)pCmF2m + 1或CR5 [CO2(CH2)nCmF2m + 1] 2,其中R5是氢或烷基,n和m独立地是1-12的整数,p是0或整数 1-12,R3是可以聚合的不饱和部分,X是O,S或NR4,其中R4是氢或烷基,以及制备这些化合物的方法。 式(I)化合物是制备拒水拒水聚合物的有用单体。
Abstract:
A digital image processing apparatus is disclosed. The apparatus increases input pixel intensity values in an edge region of input image data to form output pixel intensity values. The input pixel intensity values are varyingly increased depending on a location of the input pixel values within the edge region. The output values are printed on an edge region of a print sheet. A printer prints the output intensity pixel values on a print sheet. The invention allows printing of digital images to the edge of a print sheet without accumulating a great deal of toner at the edge of the sheet or overburdening a toner cleaning device.