Abstract:
An electric load apparatus (100) includes a DC power source (B), a voltage sensor (10, 20), system relays (SR1, SR2), a capacitor (11, 13), a DC/DC converter (12), an inverter (14), a current sensor (24), a rotation sensor (25), a control apparatus (30), and an AC motor (M1). The control apparatus (30) restricts an increase amount of consumed power in the AC motor (M1) in a range in which the driving operation of the electric load apparatus (100) can be maintained, when the increase amount of the consumed power in the AC motor (M1) exceeds an allowable power that can be supplied from the capacitor (13) to the inverter (14).
Abstract:
An ECU estimates an output allowable power of a power storage device based on the temperature and SOC of the power storage device. The ECU also calculates a threshold power based on the power required to start an engine. When the ECU determines that the output allowable power is lower than the threshold power, the up-converter is controlled such that the boosting rate of the up-converter is restricted to be below a prescribed value.
Abstract:
An electric motor (10) has a field pole formed by a field current passing through a field winding (50). A voltage booting converter (120) converts output voltage of a battery (B) and outputs the voltage between a power source line (107) and a grounding line (105). Field winding (50) is electrically connected onto an electric current channel between battery (B) and power source line (107) and formed so that voltage switched by a switching element (Q1) is applied to both ends. A controller (100) controls the field current so as to adjust density of magnetic flux between a rotor and a stator by performing switching control on switching element (Q1) and a switching element (Q3) connected in parallel to field winding (50) and converts the output voltage of battery (B) into voltage in accordance with a voltage command value.
Abstract:
A rotating electrical machine control system includes a frequency converting portion that is interposed between a rotating electrical machine for driving a vehicle and a DC power source for supplying electric power to the rotating electrical machine, and that converts an output of the DC power source to an AC output at least during a powering operation of the rotating electrical machine; a voltage converting portion that is interposed between the DC power source and the frequency converting portion, and that boosts the output of the DC power source based on a boost command value which is set according to a target torque and a rotational speed of the rotating electrical machine; and a control portion for controlling the frequency converting portion and the voltage converting portion.
Abstract:
A vehicular power system includes: a secondary battery; an up-converter receiving a voltage of the secondary battery at a first connection node thereof, and up-converting a voltage between terminals of the secondary battery and outputting the up-converted voltage at a second connection node thereof; system main relays switching between connection and disconnection of the voltage up-converted by the up-converter to and from a load of a vehicle; and a case housing the secondary battery, the up-converter and the system main relays. Preferably the vehicular power supply system further includes a capacitor having one end connected to the second connection node of the up-converter and the case further houses the capacitor. Preferably the capacitor includes a plurality of series connected, electric dual layer capacitors. A vehicular power supply system suitable for being mounted in a vehicle and miniaturized, and a vehicle having the system mounted therein, can thus be provided.
Abstract:
An object of the present invention is to provide a motive power output apparatus including a motor with a permanent magnet and a motor without a permanent magnet. A boost device (10) is connected to a power storage device (B). A first drive device (30) is connected to the boost device (10). A first rotating electric machine (35) with a permanent magnet is connected to the first drive device (30). A second drive device (40) is connected to the power storage device (B). A second rotating electric machine (45) without a permanent magnet is connected to the second drive device (40). A third drive device (20) is connected in parallel to the first drive device (30). A third rotating electric machine (25) with a permanent magnet is connected to the third drive device (20). The second rotating electric machine (45) is formed of a reluctance motor or an induction motor. The first rotating electric machine (35) and the second rotating electric machine (45) of the present invention may be linked to wheels of a vehicle.
Abstract:
When charging of a power storage device from a commercial power supply is controlled, charging and cooling of the power storage device are performed in a timesharing manner. Specifically, when a temperature of the power storage device rises, a control device turns off a system main relay and stops a boost converter, and drives an inverter to operate a compressor (MC) for an air conditioner. When the power storage device is cooled down, the control device turns on the system main relay again and drives the boost converter, and stops the inverter.
Abstract:
The present invention provides a method and apparatus for providing power to a fan motor. One embodiment of the apparatus includes a boost regulator configured to provide an output current to a fan motor using an input current provided at an input voltage by a power supply. The fan motor is configured to draw the output current at a first frequency and the input current is constant within a first selected tolerance over a time scale longer than indicated by the first frequency.
Abstract:
A vehicular power system includes: a secondary battery (B); an up-converter (12) receiving a voltage of the secondary battery at a first connection node thereof, and up-converting a voltage between terminals of the secondary battery (B) and outputting the up-converted voltage at a second connection node thereof; system main relays (SMRP, SMRG) switching between connection and disconnection of the voltage up-converted by the up-converter (12) to and from a load of a vehicle; and a case (140) housing the secondary battery (B), the up-converter (12) and the system main relays (SMRP, SMRG). Preferably the vehicular power supply system further includes a capacitor (23) having one end connected to the second connection node of the up-converter (12) and the case (140) further houses the capacitor (23). Preferably the capacitor (23) includes a plurality of series connected, electric dual layer capacitors. A vehicular power supply system suitable for being mounted in a vehicle and miniaturized, and a vehicle having the system mounted therein, can thus be provided.
Abstract:
An upper limit value setting unit of a control device conducts integration on the change in battery power, and determines whether the integrated value is lower than a preset first threshold value (negative value). When determination is made that the integrated value is lower than the first threshold value, and the battery power difference is lower than the second threshold value (negative value), the upper limit value setting unit sets Vup2 that is lower than the general Vup1 as the upper limit value of the inverter input voltage command.