SEMICONDUCTOR PACKAGES SEPARATED USING A SACRIFICIAL MATERIAL
    421.
    发明申请
    SEMICONDUCTOR PACKAGES SEPARATED USING A SACRIFICIAL MATERIAL 有权
    使用非常重要的材料分离的半导体封装

    公开(公告)号:US20160379846A1

    公开(公告)日:2016-12-29

    申请号:US14754143

    申请日:2015-06-29

    Abstract: One or more embodiments are directed to semiconductor packages that are assembled using a sacrificial material, that when removed, separates the assembled packages into individual packages. The sacrificial material may be removed by a blanket technique such that a mask, pattern, or alignment step is not needed. In one embodiment the sacrificial material is formed on the lead frame on a connecting bar of a lead frame between adjacent leads. After the molding step, the connecting bar is etched away exposing a surface of the sacrificial material. The sacrificial material is removed, thereby separating the assembled packages into individual packages.

    Abstract translation: 一个或多个实施例涉及使用牺牲材料组装的半导体封装,当被移除时,将组装的封装分离成单个封装。 可以通过覆盖技术去除牺牲材料,使得不需要掩模,图案或对准步骤。 在一个实施例中,牺牲材料形成在引线框架上的相邻引线之间的引线框架的连接杆上。 在模制步骤之后,连接杆被蚀刻掉,暴露牺牲材料的表面。 去除牺牲材料,从而将组装的包装分离成单独的包装。

    MAX-LOG-MAP EQUIVALENCE LOG LIKELIHOOD RATIO GENERATION SOFT VITERBI ARCHITECTURE SYSTEM AND METHOD
    423.
    发明申请
    MAX-LOG-MAP EQUIVALENCE LOG LIKELIHOOD RATIO GENERATION SOFT VITERBI ARCHITECTURE SYSTEM AND METHOD 审中-公开
    最大日志映射等效日志比例生成软件VITERBI架构系统和方法

    公开(公告)号:US20160352364A1

    公开(公告)日:2016-12-01

    申请号:US15234122

    申请日:2016-08-11

    Abstract: A modified soft output Viterbi algorithm (SOVA) detector receives a sequence of soft information values and determines a best path and an alternate path for each soft information value and further determines, when the best and alternate paths lead to the same value for a given soft information value, whether there is a third path departing from the alternate path that leads to an opposite decision with respect to the best path for a given soft information value. The SOVA detector then considers this third path when updating the reliability of the best path. The modified SOVA detector achieves max-log-map equivalence effectively through the Fossorier approach and includes modified reliability metric units for the first N stages of the SOVA detector, where N is the memory depth of a given path, and includes conventional reliability metric units for the remaining stages of the detector.

    Abstract translation: 修改的软输出维特比算法(SOVA)检测器接收软信息值序列,并为每个软信息值确定最佳路径和备用路径,并且进一步确定当给定软件的最佳和替代路径导致相同值时 信息值,是否存在离开替代路径的第三路径,其导致相对于给定软信息值的最佳路径的相反决定。 然后,SOVA检测器在更新最佳路径的可靠性时考虑第三条路径。 改进的SOVA检测器通过Fossorier方法有效地实现了最大对数映射的等效性,并且包括SOVA检测器的前N个级的修正的可靠性度量单位,其中N是给定路径的存储器深度,并且包括用于 检测器的剩余阶段。

    High density resistive random access memory (RRAM)
    428.
    发明授权
    High density resistive random access memory (RRAM) 有权
    高密度电阻随机存取存储器(RRAM)

    公开(公告)号:US09484535B1

    公开(公告)日:2016-11-01

    申请号:US14960712

    申请日:2015-12-07

    Abstract: A resistive random access memory (RRAM) structure is formed on a supporting substrate and includes a first electrode and a second electrode. The first electrode is made of a silicided fin on the supporting substrate and a first metal liner layer covering the silicided fin. A layer of dielectric material having a configurable resistive property covers at least a portion of the first metal liner. The second electrode is made of a second metal liner layer covering the layer of dielectric material and a metal fill in contact with the second metal liner layer. A non-volatile memory cell includes the RRAM structure electrically connected between an access transistor and a bit line.

    Abstract translation: 在支撑衬底上形成电阻随机存取存储器(RRAM)结构,并且包括第一电极和第二电极。 第一电极由支撑衬底上的硅化物翅片和覆盖硅化物翅片的第一金属衬垫层制成。 具有可配置电阻性能的电介质材料层覆盖第一金属衬垫的至少一部分。 第二电极由覆盖电介质材料层的第二金属衬垫层和与第二金属衬垫层接触的金属填充物制成。 非易失性存储单元包括电连接在存取晶体管和位线之间的RRAM结构。

    JUNCTIONLESS FINFET DEVICE AND METHOD FOR MANUFACTURE
    429.
    发明申请
    JUNCTIONLESS FINFET DEVICE AND METHOD FOR MANUFACTURE 审中-公开
    无连接FINFET器件及其制造方法

    公开(公告)号:US20160300857A1

    公开(公告)日:2016-10-13

    申请号:US14680392

    申请日:2015-04-07

    Abstract: A junctionless field effect transistor on an insulating layer of a substrate includes a fin made of semiconductor material doped with a dopant of a first conductivity type. A channel made of an epitaxial semiconductor material region doped with a dopant of a second conductivity type is in contact with a top surface of the fin. An insulated metal gate straddles the channel. A source connection is made to the epitaxial semiconductor material region on one side of said insulated metal gate, and a drain connection is made to the epitaxial semiconductor material region on an opposite side of said insulated metal gate. The epitaxial channel may further be grown from and be in contact with opposed side surfaces of the fin.

    Abstract translation: 在基板的绝缘层上的无连接场效应晶体管包括由掺杂有第一导电类型的掺杂剂的半导体材料制成的鳍。 由掺杂有第二导电类型的掺杂剂的外延半导体材料区域形成的沟道与鳍片的顶表面接触。 绝缘金属门横跨通道。 源极连接到所述绝缘金属栅极的一侧上的外延半导体材料区域,并且在所述绝缘金属栅极的相对侧上的外延半导体材料区域进行漏极连接。 外延沟道还可以从翅片的相对的侧表面生长并与其接触。

    Integrated cantilever switch
    430.
    发明授权
    Integrated cantilever switch 有权
    集成悬臂开关

    公开(公告)号:US09466452B1

    公开(公告)日:2016-10-11

    申请号:US14675359

    申请日:2015-03-31

    Abstract: An integrated transistor in the form of a nanoscale electromechanical switch eliminates CMOS current leakage and increases switching speed. The nanoscale electromechanical switch features a semiconducting cantilever that extends from a portion of the substrate into a cavity. The cantilever flexes in response to a voltage applied to the transistor gate thus forming a conducting channel underneath the gate. When the device is off, the cantilever returns to its resting position. Such motion of the cantilever breaks the circuit, restoring a void underneath the gate that blocks current flow, thus solving the problem of leakage. Fabrication of the nano-electromechanical switch is compatible with existing CMOS transistor fabrication processes. By doping the cantilever and using a back bias and a metallic cantilever tip, sensitivity of the switch can be further improved. A footprint of the nano-electromechanical switch can be as small as 0.1×0.1 μm2.

    Abstract translation: 纳米级机电开关形式的集成晶体管消除了CMOS电流泄漏并提高了开关速度。 纳米尺度的机电开关具有从衬底的一部分延伸到空腔中的半导体悬臂。 悬臂响应于施加到晶体管栅极的电压而弯曲,从而在栅极下形成导电沟道。 当设备关闭时,悬臂返回到静止位置。 悬臂的这种运动打破了电路,恢复了阻挡电流的门下方的空隙,从而解决了泄漏问题。 纳米机电开关的制造与现有的CMOS晶体管制造工艺兼容。 通过掺杂悬臂并使用背偏压和金属悬臂尖,可以进一步提高开关的灵敏度。 纳米机电开关的占地面积可以小至0.1×0.1μm2。

Patent Agency Ranking