Abstract:
The present invention relates to a process for making a thermoplastic composition, comprising the steps of: a) melt mixing a first thermoplastic polymer and a paper product comprising a mixture of cellulose fibers and a second thermoplastic polymer.
Abstract:
Additives such as colorants may be incorporated into polymeric materials such as polyesters, such as in polyester fiber production, by use of a liquid formulation comprising colorant and a vehicle. The vehicle may comprise a functionalized pentaerythritol, trimethylolpropane or trimellitate. The liquid formulation is suitably contacted with the polymeric material in a melt processing apparatus.
Abstract:
A self-sealing elastomer composition that includes a diene elastomer, a hydrocarbon resin with a given softening temperature, and a liquid plasticizing agent, is manufactured according to a process that includes successive stages. In one stage, the hydrocarbon resin is incorporated in the diene elastomer by kneading the resin and the elastomer in a mixer at or up to a temperature referred to as “hot compounding” temperature, which is greater than the softening temperature of the resin, in order to obtain a masterbatch. In another stage, the liquid plasticizing agent is incorporated in the masterbatch by kneading the agent and the masterbatch in the same mixer or in another mixer, in order to obtain the self-sealing composition. The self-sealing composition then is formed dimensionally.
Abstract:
The present invention provides a polyamide resin composition comprising (A) a polyamide resin, (B) an aluminic acid metal salt, and (C) an organic acid, wherein the content of the aluminic acid metal salt (B) is larger than 0.6 parts by mass based on 100 parts by mass of the polyamide resin (A).
Abstract:
A process for the production of a polymer composition is disclosed. The polymer composition comprises an organopolysiloxane dispersed in a thermoplastic organic polymer liable to thermo-radical degradation or cross-linking when subjected to a high compounding energy at a temperature above its melting point. In a first step (I), a thermoplastic organic polymer and an organopolysiloxane are mixed at a temperature at which both the thermoplastic organic polymer and the organopolysiloxane are in liquid phases to form a masterbatch. In a second step (II), the masterbatch is mixed with further thermoplastic organic polymer to form a polymer composition having a lower concentration of organopolysiloxane than that in the masterbatch. In the first step (I), the thermoplastic organic polymer and the organopolysiloxane are mixed in the presence of an additive capable of inhibiting the thermo-radical degradation or cross-linking of the thermoplastic organic polymer. The organopolysiloxane of the masterbatch remains stable during processing.
Abstract:
A polymeric material having anisotropic properties, such as mechanical properties (e.g., modulus of elasticity), thermal properties, barrier properties (e.g., breathability), and so forth, is provided. The anisotropic properties can be achieved for a single, monolithic polymeric material through selective control over the manner in which the material is formed. For example, one or more zones of the polymeric material can be strained to create a unique network of pores within the strained zone(s). However, zones of the polymeric material that are not subjected to the same degree of deformational strain will not have the same pore volume, and in some cases, may even lack a porous network altogether.
Abstract:
A magnetic powder is obtained by removing a dispersion medium from a magnetic fluid that includes magnetic particles, a dispersant and the dispersion medium. A magnetic powder composition includes the magnetic powder and a resin material, and a magnetic powder composition molded body is obtained therefrom. A method of producing a magnetic powder includes removing a dispersion medium from a magnetic fluid containing magnetic particles, a dispersant and the dispersion medium, and powdering a solid component obtained by removing the dispersion medium. A method of producing a magnetic powder composition and a method of producing a magnetic powder composition molded product are also provided.
Abstract:
A biaxially oriented polyester film comprising polyester and at least one hydrolysis stabilizer selected from a glycidyl ester of a branched monocarboxylic acid, wherein the monocarboxylic acid has from 5 to 50 carbon atoms, wherein said hydrolysis stabilizer is present in the film in the form of its reaction product with at least some of the end-groups of said polyester, and wherein said reaction product is obtained by the reaction of the hydrolysis stabilizer with the end-groups of the polyester in the presence of a metal cation selected from the group consisting of Group I and Group II metal cations.
Abstract:
The invention relates to a method for producing a dispersion of nanoscale dicarboxylic acid salts, to the use of these dispersions for producing a compound, and to the use for producing films. The invention further relates to the use of the compounds for producing films.
Abstract:
A method for adding an additive into a polymer melt, preferably a polyester polymer melt such as polyethylene terephthalate (PET), comprising: a. discharging a polymer melt from a reactor to form a discharged polymer melt stream, and b. solidifying said discharged polymer melt stream, and c. prior to solidification, feeding a portion of the discharged polymer melt stream to a slipstream to form a slipstream polymer melt, and d. feeding an additive into said slipstream polymer melt to form an additive containing slipstream, and e. feeding the additive containing slipstream to a location upstream from the feed location forming said slipstream.