Abstract:
At least one embodiment of the invention relates to an arrangement for thermocyclization of a substance. At least one embodiment of the invention also relates to a method for the thermocyclization of a substance, including: the controllable valves automatically close the PCR chamber after the test fluid has been introduced into the PCR-chamber, and the properties for the memory metal or bimetal elements are used for closing the valves when a predetermined temperature has been exceeded. As a result, the mechanical actuator, which is used to actuate the valves, is thermally coupled to the heating/cooling element in order to carry out the thermocyclization.
Abstract:
Shape memory polymers featuring reversible actuation capability under ambient stimulus for integration with apparel. One approach is to use a multiblock polymer consisting of two (or potentially more) blocks in which the one block is the crystalline switching block with relatively low melting transitions, the other block has a higher thermal transition, and the two blocks are linked together by a linker molecule. Another approach is to use a graft copolymer having high and low melting transitions where the graft copolymer has a first polymer serving as the backbone and a second polymer being grafted to or from the backbone at certain graft locations. A further approach is to use latent crosslinking of a semicrystalline polymer with reactive groups placed on the backbone.
Abstract:
This invention relates to shape memory block copolymers comprising: at least one switching segment having a Ttrans from 10 to 70° C.; and at least one soft segment, wherein at least one of the switching segments in linked to at least one of the soft segments by at least one linkage, and wherein the copolymer transforms from a first shape to a second shape by application of a first stimulus and the copolymer transforms back to the first shape from the second shape by application of a second stimulus. The shape memory block copolymers may be biocompatible and biodegradable.
Abstract:
A surgical ablation system employing an ablation probe having a deployable ground plane is disclosed. The disclosed system includes a source of ablation energy and a source of electrosurgical energy, and a switching assembly configured to select between ablation and electrosurgical modes. The probe includes a cannula having a shaft slidably disposed therein. The shaft includes a deployable ground plane electrode assembly and a needle electrode disposed at distal end of the shaft. As the shaft is extended distally from the cannula, the ground plane electrode unfolds, and the needle electrode is exposed. Electrosurgical energy is applied to tissue via the needle electrode to facilitate the insertion thereof into tissue. Ablation energy is applied to tissue via the needle electrode to achieve the desired surgical outcome. The shaft, ground plane electrode and needle electrode are retracted into the cannula, and withdrawn from the surgical site.
Abstract:
Radiopaque polymer compositions and methods for making the compositions are provided. These radiopaque polymer compositions include shape memory polymer compositions comprising a crosslinked polymer network, the network comprising a first repeating unit derived from a monofunctional iodinated monomer and a second repeating unit derived from a multifunctional non-iodinated monomer wherein neither of the two monomers is fluorinated. Devices formed from radiopaque polymer compositions are also provided.
Abstract:
A device and method suitable for remodelling the internal surface of a hollow vessel at least partially occluded by a mass is provided. The device comprises an elongate body having a distal end and a proximal end, the distal end comprising a tip portion located at the distal terminus of the body, and at least one heating element located proximally to the tip portion within the distal end. The at least one heating element is configured to be greater in dimension proximally than distally and thereby tapers towards the distal end. Furthermore, the at least one heating element is arranged so that it can be deployed outwardly from the body of the device and in so doing exert an expansion force on the hollow vessel. The at least one heating element is capable of delivering sufficient energy to remodel the internal surface, and if necessary caused localized ablation, of the hollow vessel without inducing closure of the hollow vessel.
Abstract:
An ablation catheter comprises a catheter body extending longitudinally between a proximal end and a distal end along a longitudinal axis; and an ablation element assembly comprising ablation elements connected to the catheter body, each ablation element to be energized to produce an ablation zone. The ablation elements are distributed in a staggered configuration such that the ablation zones of the ablation elements span one or more open arc segments around the longitudinal axis, but the ablation zones of all ablation elements projected longitudinally onto any lateral plane which is perpendicular to the longitudinal axis span a substantially closed loop around the longitudinal axis. Since the ablation zones do not form a closed loop, the risk of renal artery/vein stenosis is reduced or eliminated. Since the ablation zones of all ablation elements projected longitudinally onto any lateral plane span a substantially closed loop, substantially complete renal denervation is achieved.
Abstract:
An electrophysiology catheter includes an elongate catheter body having an elastically-deformable distal region predisposed to assume a spiral shape and a first plurality of electrodes disposed thereon. Each of the first plurality of electrodes includes an electrically active region limited to the inner surface of the spiral shape for use in non-contact electrophysiology studies. A second plurality of electrodes may also be disposed on the distal region interspersed (e.g., alternating) with the first plurality of electrodes, with each of the second plurality of electrodes having an electrically active region extending into the outer surface of the spiral shape for use in contact electrophysiology studies. The distal region may be deformed into a straight configuration for insertion into and navigation through the patient's vasculature, for example via use of a tubular introducer. As the distal region deploys beyond the distal end of the introducer, it resumes the spiral shape.
Abstract:
The disclosure relates to a woven fabric for use in an implantable medical device. The woven fabric has shape memory element strands woven with textile strands. At least one of the shape memory element strands has at least one float of at least five textile strands between binding points.
Abstract:
A medical device includes an insertion tube, having a longitudinal axis and having a distal end adapted for insertion through a body passage into a cavity within a body of a patient. An electrode is located on the distal end of the insertion tube and is configured to contact tissue in the cavity. A resilient member is contained within the distal end of the insertion tube and is configured, when unconstrained, to cause the distal end to bend away from the longitudinal axis in a curved shape and to straighten toward the longitudinal axis when subjected to a force.