Abstract:
The invention relates to a method for frame-error detection, wherein frames are defined as being wrong when a determined logical combination of several different comparison criteria is satisfied. The inventive method enables highly efficient frame-error detection to be carried out, specially when the parametric source coding technique is used.
Abstract:
The invention relates to a method for frame quality detection and a receiver for implementing the method. For frame quality detection, results A and B (27 and 28) are compared with each other and a predetermined threshold value (241) in the method. Result A (27) is formed either as the sum/product of soft bit decisions or as the bit error rate from bursts comprising bits from successive frames N and N + 1. Result B (28) is formed in the same way of frames N - 1 and N. When comparing results A and B (27 and 28) with each other, frame N is determined to be bad if either result (27 or 28) is essentially smaller than the other result (28 or 27). Frame N is also determined to be bad if both results (27 and 28) are smaller than the predetermined threshold value (241). The method improves detection of a bad frame and accordingly reduces the interference sound received by a receiver and caused by erroneously interpreted bad frames, especially during silence.
Abstract:
In a TDMA cellular telephone system, an error concealment method provides parameter interpolation based on soft quality measures that will enhance the speech quality under bad channel conditions compared to prior methods of repeating previous voice data frames. Specifically, the soft technique of the present invention uses a weighted combination of previous and present frame parameters, where the weighting reflects the probability of error. The present invention will improve the masking of errors compared to hard actions based on a binary detection, especially when the binary detection fails or when the received frame is declared as being "good". The method can also utilize parameter based soft information without increasing the bitrate.
Abstract:
An error detection system for discrete receiver. The error detection system indicates bad frames of binary information signal which contain distorted bits in excessive numbers so great as to cause a convolutional decoder to generate an incorrect, decoded signal. A signal decoded by a convolutional decoder (512) is re-encoded by an encoder (524), and the re-encoded signal (530) is compared with the signal received (506) by the receiver. When excessive numbers of re-encoded signal portions differ too greatly with corresponding portions of an actual, received signal, a bad frame indication is generated (590).
Abstract:
In an anti-fraud control system, a first error monitoring device includes a first frame transmitting and receiving unit that receives a frame flowing on the on-board network; and a first error detector that causes transmission of an error notification frame for notifying of an occurrence of an error in the frame when detecting the occurrence of the error in the frame received by the first frame transmitting and receiving unit. Each of second error monitoring devices includes: a second frame transmitting and receiving unit that receives the error notification frame; and a second error detector that regards, as a frame to be invalidated, the frame subjected to the error and included in the received error notification frame, and shifts the second error monitoring device to an invalidation mode for invalidating reception of subsequent frames, if no error is detected in an own branch with respect to the frame.
Abstract:
Message faults are expected to be a major impediment to 5G and future 6G throughput. The disclosed procedures enable a wireless receiver to recover many types of message faults based on the demodulation quality of each message element, among other diagnostic tests, and then to recover the correct message either by calculation (based on an embedded error-detection code) or by substitution (based on a search of all other modulation states in place of the faulted message elements). The method also includes determining, according to the modulation quality, when there are too many faults to efficiently mitigate, in which case a retransmission of just the affected portion is requested. The receiver can then merge the two versions of the message, selecting the better-quality message element at each position, and thereby correct the faulted message versions.
Abstract:
Disclosed in the present disclosure are a counting method, a terminal device, a chip, a computer readable storage medium, a computer program product and a computer program. The method includes maintaining at least one counter, the at least one counter being used to record how many times first indication information is received; and determining to increase a count value of a counter corresponding to the first indication information based on received first indication information.
Abstract:
A key requirement for 5G and 6G networking is reliability. Message faults are inevitable, and therefore procedures are needed to identify each fault location in a message and, if possible, to rectify it. Disclosed herein are artificial intelligence AI models and procedures for mitigating faults in wireless messages by (a) evaluating the signal quality of each message element according to waveform features and modulation deviations, (b) evaluating the fault probability of each message element by seeking correlations, which may be subtle, among the various waveform measurements including polarization and frequency offset, and (c) correcting the faults according to the message type, apparent format, intent or meaning, typical previous messages of a similar type, correlations of bit patterns and symbol sequences, error-detection codes if present, and other content-based indicators uncovered during model development. Automatic, real-time fault localization and correction may save substantial time and resources while substantially enhancing messaging reliability.
Abstract:
A key requirement for 5G and 6G networking is reliability. Message faults are inevitable, and therefore procedures are needed to identify each fault location in a message and, if possible, to rectify it. Disclosed herein are artificial intelligence AI models and procedures for mitigating faults in wireless messages by (a) evaluating the signal quality of each message element according to waveform features and modulation deviations, (b) evaluating the fault probability of each message element by seeking correlations, which may be subtle, among the various waveform measurements including polarization and frequency offset, and (c) correcting the faults according to the message type, apparent format, intent or meaning, typical previous messages of a similar type, correlations of bit patterns and symbol sequences, error-detection codes if present, and other content-based indicators uncovered during model development. Automatic, real-time fault localization and correction may save substantial time and resources while substantially enhancing messaging reliability.
Abstract:
Message faults are inevitable in the high-throughput environment of 5G and planned 6G. Retransmissions are costly in time and resources, while generating extra backgrounds and interference. Therefore, methods are disclosed for recovering a faulted message by identifying and correcting each mis-demodulated message element. The faulted message elements generally have substantially lower modulation quality than the correctly demodulated elements, and can be identified by determining the modulation quality of each received message element. If the number of faulted message elements is small, the receiver may correct them using a grid search tested by an associated error-detection code. If the number of faults exceeds a predetermined threshold, the receiver can request a retransmission, and then assemble a merged copy of the message by selecting the message element with the best modulation quality from each version. Substantial time and resources may be saved, and reliable communication may be restored despite poor reception.