Abstract:
A process for producing an aliphatic polyester resin composition, wherein an aliphatic polyester resin is melt-kneaded with a phosphoric acid ester having a reduced moisture content of 1.5 wt. % or less. As a result, an aliphatic polyester resin composition having an improved moisture resistance is provided.
Abstract:
The recited invention relates to polyester elastomer compositions having improved mechanical properties when prepared using aqueous solutions of metal salts. An improvement in DMA storage modulus, a decrease in melt flow rate and an increase in light transmittance are observed in polyester elastomer compositions in which the metal salt is melt-mixed with aqueous solutions of metal salts compared to polyester compositions in which the metal salt is mixed into the polyester composition as a solid.
Abstract:
The present invention relates to a decorative surface covering obtainable by a vulcanisable composition, said composition comprising a first polymer component consisting of styrene butadiene styrene block copolymer (SBS); a second polymer component selected from the group consisting of a random or partially random copolymer of butadiene and styrene (SBR), and nitrile butadiene rubber (NBR); a third polymer component consisting of a high styrene content styrene butadiene copolymer (HSR), a filler, a vulcanisation system and additives selected from the group consisting of processing aids, stabilizers, pigments and compatibilizers.
Abstract:
Compartmentalized chips of at least two chemically similar crystallizable thermoplastic polymers each having a different intrinsic viscosity placed in separate zones are disclosed. These compartmentalized chips exhibit thermal characteristics that are different from the traditional technique of homogeneously combining the two materials into the chip. These compartmentalized chips in their amorphous, crystalline and solid phase polymerized forms exhibit a longer crystallization half time than the homogeneous mixture, thus permitting faster injection cycle times when compared to an equivalent homogenous mixture.
Abstract:
The present invention provides a polyamide resin composition comprising a polyamide resin (A), a melamine cyanurate-based flame retardant (B) and a surfactant (C), wherein the polyamide resin composition comprises 100 parts by mass of the total of 60 to 75% by mass of the polyamide resin (A) comprising at least one or more polyamide resin (A1) having a melting point of 255 to 270° C. and 25 to 40% by mass of the melamine cyanurate-based flame retardant (B), and 0.1 to 1.0 part by mass of the surfactant (C) comprising at least one or more fatty acid ester of a polyalkylene polyhydric alcohol, and wherein the melamine cyanurate-based flame retardant (B) dispersed in the polyamide resin composition has an average dispersion particle diameter of 1 to 20 μm.
Abstract:
The present invention relates to a thermoplastic resin composition that includes a first phase polymeric material, at least one conductive filler and a second phase polymeric material where in the first phase polymer and second phase polymer are in co-continuous in nature and said conductive composition exhibits positive temperature coefficient behavior. The invention also relates to a method of making a co-continuous conductive composition that exhibits positive temperature coefficient behavior.
Abstract:
A method for producing a resin composition, including the steps of melt-kneading a raw material A containing a polylactic acid resin, a crystal nucleating agent, and a plasticizer containing an ester compound formed between a polycarboxylic acid having a hydrocarbon group having 1 to 7 carbon atoms and a mono-alcohol having a hydrocarbon group having 1 to 7 carbon atoms, to prepare a polylactic acid-containing melt-kneaded mixture having a relative crystallinity of 70% or more (step A); and further melt-kneading the polylactic acid-containing melt-kneaded mixture obtained by the step A and a raw material B containing a polypropylene resin and a compatibilizing agent (step B). The resin composition obtainable by the method of the present invention can be suitably used in various industrial applications, such as daily sundries, household electric appliance parts, and automobile parts.
Abstract:
A method of manufacturing a polylactic acid resin injection molded article, having the step (1): a step of melt-kneading a polylactic acid resin composition containing a polylactic acid resin and a specified organic crystal nucleus agent, while contacting the composition with a supercritical fluid; and step (2): a step of filling the melted product obtained in step (1) in a die to mold with injection-molding. The manufacturing method of the present invention is used as an advantageous technique as compared with the technique of achieving satisfactory moldability by the addition of plasticizer in the field, for example, which requires a polylactic acid resin molded article having high rigidity.
Abstract:
The instant invention generally provides polymer inorganic clay composite comprising a molecularly self-assembling material and an inorganic clay, and a process of making and an article comprising the polymer inorganic clay composite.
Abstract:
Very low loading of impact modifier less than 4% can significantly improve elongation and impact strength of N6/clay nanocomposites and keep the high tensile strength and modulus. This rubber modified nylon nanocomposites have potential applications in fabricating high-strength fibers for textile industry, coatings for strings or polymer parts, and packaging industry.