Abstract:
An optical spectrum analyzer includes an integrated beam switch array. As a result, a single spectrum analyzer can be amortized across multiple optical links with pigtails transmitting the optical signals from separate optical links. The switch array providing one of the optical signals as an input signal to the optical spectrum analyzer.
Abstract:
An imaging device for biochemical or medical samples, the pulse mode light source of which incorporates flash lamps and a rotating mirror in an inclined position, the said mirror reflecting the light emitted by each flash lamp in turn along the same optical path to the sample. The flash lamps are switched on alternately in phases and synchronised with the rotating mirror and the emission light chopper, which comprises two rotating discs. The turning mirror directs the light at the sample from above and/or below, in which case a double-acting transparent scattering plate can be used.
Abstract:
In a spectrophotometer, light emitted from a light source is processed to provide monochromatic light by a monochromator, and reaches a sector mirror having a chopper function. The sector mirror is rotated by a motor, and a rotational frequency of the motor can be controlled by a controller. By rotation of the sector mirror, monochromatic light is alternately distributed to a sample cell and a reference cell through a mirror. In measuring a wavelength range where a detector having a photomultiplier with a fast response speed is used, the motor is rotated at a high speed, so that time for scanning a wavelength is shortened. In measuring a wavelength range where a detector having lead sulfide with a slow response speed is used, the motor is rotated at a low speed to obtain a sufficiently strong signal intensity. Accordingly, in the spectrophotometer, the analysis time can be shortened, and the sufficiently strong signal can be outputted at the same time.
Abstract:
A system and method are provided for detecting one or more substances. An optical path switch divides sample path radiation into a time series of alternating first polarized components and second polarized components. The first polarized components are transmitted along a first optical path and the second polarized components along a second optical path. A first gasless optical filter train filters the first polarized components to isolate at least a first wavelength band thereby generating first filtered radiation. A second gasless optical filter train filters the second polarized components to isolate at least a second wavelength band thereby generating second filtered radiation. The first wavelength band and second wavelength band are unique. Further, spectral absorption of a substance of interest is different at the first wavelength band as compared to the second wavelength band. A beam combiner combines the first and second filtered radiation to form a combined beam of radiation. A detector is disposed to monitor magnitude of at least a portion of the combined beam alternately at the first wavelength band and the second wavelength band as an indication of the concentration of the substance in the sample path.
Abstract:
A postacquired spectrophotometer, for use with a sample and reference. The spectrophotometer has a filter unit, defining an axis of movement, and pluralities of designated sites and dark sites disposed in uniform relation to the axis. The designated and dark sites are disposed in alternation. Alternating designated sites have apertures and filters covering the apertures. Further, a main member, coaxial with the filter unit, has sample and reference beam paths, which are intersected by the sites. The main member has disposed, in operative relation to the actuators, an actuator sensor, which generates an integration actuator signal upon alignment with each integration actuator and a clamping actuator signal upon alignment with each clamping actuator. Moreover, a drive continuously moves the filter unit relative to the axis and beam paths. Further, a light distribution system directs light separately from the sample and reference to respective beam paths, and then to a detector, which produces a detector signal responsive to light received. Finally, means for processing the signals is provided, including a clamping circuit, integrators, and a demultiplexer.
Abstract:
An apparatus for measuring color transmissivities of a color separation prism P includes (where the color separation prism P receives a measurement light S on an incident path and emits three color lights Sr, Sg and Sb on three exit paths of different directions): a photomultiplier 21 and an integrating sphere I for measuring an intensity of light entering the integrating sphere I on an entrance path, where the entrance path is set detached from an extension of the incident path; a first movable mirror 9 located in one of four paths including an extension of the incident path and the three exit paths for reflecting the light on each path to the second movable mirror 10; and a second movable mirror 10 placed on the entrance path of the integrating sphere I (with the photomultiplier 21) and oriented in one of four directions for reflecting the light from the first movable mirror 9 to the integrating sphere I. Because the 100%-transmission light and the three color lights transmitted through the color separation prism P undergo the same optical history, absolute transmissivities of the color lights can be measured, and the two-beam method can be used since the integrating sphere I is fixed.
Abstract:
Spectrophotometric apparatus and methodology suitable for continuous and long-term use. The apparatus includes a monochromator providing pre-dispersed monochromatic light to the optical inputs of a pair of fiber optic cables and a translator for alternatively positioning the fiber optic cables at the same location with respect to the monochromator output. One of the cables conducts light to a sample under study while the other cable provides a reference for light intensity measurements. The methodology includes the steps of performing two scans through the monochromator output for each measurement on the sample. The fiber optic cables are moved between scans so that the cable employed in the latter scan occupies the former position of the cable employed in prior scan.
Abstract:
A non-mechanical optical switch is provided for alternately switching a monochromatic or quasi-monochromatic light beam along two optical paths. A polarizer polarizes light into a single, e.g., vertical component which is then rapidly modulated into vertical and horizontal components by a polarization modulator. A polarization beam splitter then reflects one of these components along one path and transmits the other along the second path. In the specific application of gas filter correlation radiometry, one path is directed through a vacuum cell and one path is directed through a gas correlation cell containing a desired gas. Reflecting mirrors cause these two paths to intersect at a second polarization beam splitter which reflects one component and transmits the other to recombine them into a polarization modulated beam which can be detected by an appropriate single sensor.
Abstract:
Disclosed herein is a spectrophotometer which includes a source of radiation; an optical system for forming a beam of radiation from the source and directing it along a sample path and along a reference path, which paths come together at a location to form a combined path that impinges on a detector; a chopper mounted at said location for successively directing one or the other of the beams along the combined path or providing a blank chopper area for blocking radiation from the combined path; a monochromator having a grating and slits disposed in the combined path, the angular position of the grating being adjustable for passing selected successive wavelengths of radiant energy through the optical system; and controls are provided for controlling the movement of the grating and/or slits so that movement only occurs when the blank chopper area is blocking the combined path.
Abstract:
A dual beam spectrophotometer includes a radiation chopper, a monochrometer, and a diffraction grating moved by a stepper motor. The chopper includes a gate pulse generator which produces gate pulses G.sub.S and G.sub.R corresponding to periods during which radiation from the source passes through a sample cell and a reference cell respectively. A stepper motor drive circuit produces pulses to step the stepper motor which are synchronized with the chopping cycle by means of the G.sub.R and G.sub.S pulses. The stepper motor is arranged to step an equal number of times in each half of a chopping cycle. A further condition which is preferably satisfied is that the first pulse of a sequence should start in the opposite half of the chopping cycle from that in which the first pulse started in a previous chopping cycle. At low stepping rates the motor will step twice in one chopping cycle and then pause for several cycles before again stepping twice.