Abstract:
A speed change device comprising an inner race having an outer surface, an outer race having an inner surface, and set of orbital rollers including inner rollers in rolling contact with the outer surface of the inner race and outer rollers in rolling contact with the inner surface of the outer race.
Abstract:
A torque transfer device has plural planets arranged for planetary rotation about one or more sun gears and within one or more ring gears. Each planet includes at least one planetary gear set comprising plural planetary gears connected to rotate together, but having a different diameter to form a differential gear system. To improve load sharing, the plural planetary gears of each planetary gear set may have a different helical angle, the plural planetary gear sets being axially movable with respect to one another. Alternatively or in addition, the planetary gears may be made flexible with respect to radial forces.
Abstract:
A high speed ratio drive system is formed of planet rollers, each having varying diameter, an outer fixed ring in contact with one diameter of the planet rollers, and an outer drive ring in contact with another diameter of the planet rollers. An inner drive element is provided by a sun drive roller in contact with the planet rollers or by a planet carrier. Preferably the system has an axial reflective symmetry minimizing twisting forces on the planet rollers.
Abstract:
A laser patterning apparatus for a three-dimensional object includes a laser generator, a beam expander configured to adjust a size of a laser beam generated by the laser generator, a dynamic focusing module configured to adjust a z-axis focus position of the laser beam passing through the beam expander, a scan head configured to adjust x- and y-axis focus position of the laser beam passing through the beam expander, a shape recognizer configured to recognize a shape of a three-dimensional object, and a controller configured to extract x-, y-, and z-axis data of the three-dimensional object and to control the scan head and the dynamic focusing module, in order to pattern the three-dimensional object with the laser beam.
Abstract:
Disclosed herein is a laser processing apparatus that includes a laser generation unit configured to generate a laser beam to process a workpiece, a first fluid jet generation unit configured to generate and inject a first fluid jet to deliver the laser beam to the workpiece, and a second fluid jet generation unit configured to inject a second fluid jet around the laser beam, wherein the first and second fluid jets are simultaneously or selectively injected.
Abstract:
A mobile platform intended for civilian, industrial, research or other use. An ambulation system or mobile platform such as for traveling over uneven terrain includes one or more leg arrangements attached to a main body or chassis. In an embodiment, a leg arrangement comprises one or more legs, such as legs that rotate in the same and singular direction around their respective rotary joints when the vehicle is moving in a single direction. The rotational axis for both legs is located near each other and preferably coaxially and allows ground contact of two or more legs at all times.
Abstract:
The present invention relates to lighting apparatus for measuring an electronic material-processed part and the test apparatus using the same. The lighting apparatus includes a dome reflection plate 12 disposed over the subject of measurement and configured to have a dome form, have a light inflow window 11 through which coaxial illumination enters or exits formed at a central part of a highest end of the dome reflection plate 12, and have incident light reflected in all directions within the dome; a plurality of dome illumination lamps 13 disposed at lower edge portions of the dome reflection plate 12 and configured to illuminate the inside of the dome; and a camera 20 disposed right over the light inflow window 11 for the coaxial illumination of the dome reflection plate 12. The lighting apparatus illuminates a processing part, that is, the subject of measurement.
Abstract:
An internal gear pump or motor includes inner and outer rotors that mesh together. An internal electric motor or generator may include a stator supported by a support element that passes through bearings of the outer rotor and the inner rotor may act as a rotor of the electric motor or generator. With or without the stator, the support element may support bearings of the inner rotor. Fluids may be supplied via the support element for cooling, lubrication or to flush a working fluid out of portions of the pump or motor, such as bearings. Flushing may also occur via channels in the housing. Axial faces of one of a pair of adjacent elements may include portions for improved axial sealing and wearing in of the other of the pair. Fluid may enter and exit chambers between the inner and outer rotors by radial ports.
Abstract:
An internal gear pump or motor includes inner and outer rotors that mesh together. An internal electric motor or generator may include a stator supported by a support element that passes through bearings of the outer rotor and the inner rotor may act as a rotor of the electric motor or generator. With or without the stator, the support element may support bearings of the inner rotor. The support element may be, for example, an eccentric shaft. Fluids may be supplied via the support element, if present, for cooling, lubrication or to flush a working fluid out of portions of the pump or motor, such as bearings. Flushing may also occur via channels in the housing with or without the presence of the support element. Axial faces of one of a pair of adjacent elements, for example the inner rotor and the outer rotor, may include portions for improved axial sealing and wearing in of the other of the pair. Fluid may enter and exit chambers between the inner and outer rotors by radial ports.
Abstract:
A planetary gearbox with two rows of planets, at least some of the planets including magnets. The planets are driven by a stator to drive the gearbox as a motor. The planets may be geared with axial portions with different helix angle to position the gears and avoid the need for a planet carrier or bearings. Gears with small heights and/or high pressure angles may be used to avoiding or reduce negative effects of conventional gearing.