Abstract:
The invention provides a droplet actuator designed for performing electroporation on cells in droplets. The invention also provides method and systems for performing electroporation on cells in droplets on a droplet actuator.
Abstract:
The present invention provides methods for on-actuator temperature measurement and temperature control, including where one or more of the temperature sensors are combined with one or more heaters that are formed of wiring traces and/or providing heaters designed for one-to- one correspondence to the temperature sensors to form temperature sensor-heater pairs. The present invention also provides methods for on-actuator temperature measurement and temperature control in which the temperature sensors comprise a connection comprising a plurality of terminals by which an amount of current can be applied and then a voltage measured, wherein the voltage that is measured across the temperature sensors can be accurately correlated to a temperature.
Abstract:
The present invention relates to apparatuses for delivering one or more volumes of fluids to one or more microfluidics devices. The invention further relates to methods for delivering one or more volumes of fluids to one or more microfluidics devices. Additionally, the invention relates to systems that include apparatuses for delivering one or more volumes of fluids to one or more microfluidics devices.
Abstract:
The present invention relates to methods of sample preparation on a droplet actuator. The invention further relates to methods of plasma sample preparation on a droplet actuator by immunocapture. The invention also relates to methods of preparing plasma that contains HIV from whole blood without the need for filtration or centrifugation. Additionally, the invention relates to methods of sample preparation that use hydrophobic chromatography for purifying or removing unwanted materials from the sample. The invention further relates to a droplet actuator and methods of loading solutions of large volume into a droplet actuator under controlled conditions. The invention also relates to methods of processing cells on a droplet actuator.
Abstract:
Aspects of embodiments may include methods for automated enzymatic detection of glucose-6-phosphate dehydrogenase (G6PD) activity. Aspects of embodiments may include methods for enzymatic detection of G6PD activity in droplets in oil. Aspects of embodiments may include a system including a droplet actuator. Aspects of embodiments may include a treatment method.
Abstract:
Droplet actuators and techniques for droplet-based assays are provided. A method of conducting an assay comprises: incubating a droplet in oil, the droplet comprising an umbelliferone substrate, a sample potentially comprising an enzyme which cleaves the umbelliferone substrate, and a zwitterionic surfactant; and detecting a signal emitted from the droplet.
Abstract:
A method of mixing a droplet, the method comprising providing a droplet on a surface, forming the droplet into a first "U" shape having a bottom region and two terminal ends, and simultaneously merging the terminal ends and splitting the droplet at the bottom region to form a second "U" shape which is substantially opposite the first "U" shape.
Abstract:
The embodiments described herein provide methods of measuring capacitance, detecting a droplet at a position, determining a thickness of an oil film and determining temperature in a droplet actuator. Specifically, the capacitance detection method may be used as a real-time verification tool in order to detect the absence, presence, and/or partial presence of a droplet at an electrode, analyze droplet properties, measure droplet size or volume, optimize the speed of droplet operation and detect air bubbles.
Abstract:
The invention provides droplet actuator assemblies and systems and methods of manufacturing the droplet actuator assemblies. In certain embodiments, two-piece enclosures are used to form a droplet actuator assembly that houses a droplet operations substrate. In certain other embodiments, one-piece enclosures are used to form a droplet actuator assembly that houses a droplet operations substrate. In the plastic injection molding process for forming substrates of the droplet actuator assemblies of the present invention may utilize insert molding (or overmolding) processes for forming a gasket in at least one substrate, thereby avoiding the need for providing and installing a separate gasket component. Further, the droplet actuator assemblies may include features that allow ultrasonic welding processes to be used for bonding substrates together. The manufacturing systems of the present invention for fabricating the droplet actuator assemblies may utilize continuous flow reel-to-reel manufacturing processes.
Abstract:
The invention is directed to droplet actuator devices and assay methods for multiplexed newborn testing for metabolic disorders. The methods include, among other things, droplet-based enzymatic assays and immunoassays for testing for metabolic disorders. The invention includes methods and devices for conducting multiple assays for different metabolic disorders on a single droplet actuator, as well as multiple assays for the same metabolic disorder using samples from different subjects and/or multiple samples from the same subject on a single droplet actuator. In various embodiments, the invention includes methods for conducting enzymatic activity assays and/or immunoassays in a single fresh blood and/or plasma samples and dried blood and/or plasma samples.