Abstract:
A filtered laser array assembly generally includes an array of laser emitters coupled between external modulators and an arrayed waveguide grating (AWG). Each of the laser emitters emits light across a plurality of wavelengths including, for example, channel wavelengths in an optical communication system. The AWG filters the emitted light from each of the laser emitters at different channel wavelengths associated with each of the laser emitters. Lasing cavities are formed between each of the laser emitters and a back reflector coupled to an output of the AWG such that laser output from the laser emitters is provided at the respective channel wavelengths of the reflected, filtered light. The external modulators enable high speed modulation of the laser output. The modulated laser output may then be optically multiplexed to produce an aggregate optical signal including multiple channel wavelengths.
Abstract:
A modular laser package system may be used to mount one type of laser package, such as a coaxial or TO (transistor outline) can laser package, to a circuit board, such as a transmitter board or a motherboard, designed to receive another type of laser package housing, such as a butterfly-type laser package housing. The modular laser package system may include a circuit board mounting platform, a laser housing mount to mount the laser package to the circuit board mounting platform, and a mounting base to facilitate mounting to the transmitter board or motherboard. The modular laser package system may also include a temperature control device, such as a thermo-electric cooler (TEC), and a temperature sensor, such as a thermistor, mounted to the laser housing mount to control and monitor the temperature of the laser package.
Abstract:
A laser for use in a laser transmitter may be heated to maintain an operating temperature of the laser above a temperature floor such that the operating temperature of the laser is allowed to vary within a reduced operating temperature range. The reduced operating temperature range of the laser thus allows the wavelength emitted by the laser to vary within a reduced range of emission wavelengths. In other words, the temperature floor reduces the temperature range experienced by the laser, which reduces the wavelength excursion. The operating temperature of the laser may be allowed to rise above the temperature floor without cooling the laser to stabilize the operating temperature.
Abstract:
The present invention is directed to a method and VCSEL (200, 300) for improved heat removal/dispersion. The VCSEL comprises a bottom mirror, an active region disposed on the bottom mirror (203, 303), a heat spreading layer (207, 307) disposed on the active region (204, 304), and a top mirror (215, 315) disposed above the heat spreading layer. The heat spreading layer may be composed of InP.
Abstract:
One or more photodiode performance parameters for a photodiode (310) are determined by first determining four data points Iph1, Voc1, Iph2, and Voc2, where Iph1 is a first short-circuit current, and Voc1 is a first open-circuit voltage, for the photodiode (310) under a first illumination condition (Qbk), and Iph2 is a second short-circuit current and Voc2 is a second open-circuit voltage, for the photodiode (310) under a second illumination condition (Qbk + Qb2). Then, at least one photodiode performance parameter for the photodiode is determined as a function of said four data points.
Abstract:
An optical component holder having a base portion with a chamfered (or step) portion is disclosed herein that allows a technician to position and partially insert the same within an associated opening using a relatively minor amount of force. The chamfered portion of the base portion operates, in a general sense, as a guide that ensures proper alignment of the optical component holder and allows the same to travel a predetermined distance within the opening before being blocked from further travel by "bottoming" out when the wider portion of the base is at the edge of the associated opening. Thus, the chamfered portion provides an alignment feature to provide tactile feedback that indicates to the technician that the optical component holder is aligned and evenly inserted into an associated opening prior to supplying additional force to press the optical component holder fully into a housing.
Abstract:
In an embodiment, an optical component assembly is disclosed and is configured to be at least partially disposed within at least one first opening of an optical subassembly housing. The at least one optical component assembly comprising a base extending from a first end to a second end along a longitudinal axis, and a vertical mount disposed on the base and including a first surface that provides a mounting region to couple to an optical component, the first surface defining a vertical axis that extends substantially upright from the base and a horizontal axis that is angled relative to the longitudinal axis of the base at a first angle, the vertical mount further providing a channel that extends through the vertical mount, wherein the channel provides an optical pathway angled relative to the first surface at the first angle, the first angle being substantially between about 15 and 75 degrees.
Abstract:
An arrayed waveguide grating (AWG) device for use in an optical transceiver is disclosed, and can de-multiplex an optical signal into N number of channel wavelengths. The AWG device can include an AWG chip, with the AWG chip providing a planar lightwave (PLC) circuit configured to de-multiplex channel wavelengths and launch the same into output waveguides. A region of the AWG chip may be tapered such that light traveling via the output waveguides encounters an angled surface of the tapered region and reflects towards an output interface region of the AWG chip. Thus detector devices may optically couple to the output interface region of the AWG chip directly, and can avoid losses introduced by other approaches which couple an output of an AWG to detectors by way of a fiber array or other intermediate device.
Abstract:
Techniques are disclosed for filling gaps formed between a press-fit component and an optical subassembly housing to introduce a seal or barrier that can prevent or otherwise mitigate the ingress of contaminants. In an embodiment, a layer of sealant material is applied to one or more surfaces of an optical component prior to press-fitting the component into an optical subassembly housing. Alternatively, or in addition to applying sealant to one or more surfaces of an optical component, a layer of sealant material may be disposed on an interface formed between an outer surface of the optical subassembly housing and the optical component press-fit into the same. Techniques disclosed herein are particularly well suited for small form-factor optical subassemblies that include one or more optical components press-fit into openings of a subassembly housing during manufacturing.
Abstract:
A coaxial transmitter optical subassembly (TOSA) including a cuboid type TO laser package may be used in an optical transceiver for transmitting an optical signal at a channel wavelength. The cuboid type TO laser package is made of a thermally conductive material and has substantially flat outer surfaces that may be thermally coupled to substantially flat outer surfaces on a transceiver housing and/or on other cuboid type TO laser packages. An optical transceiver may include multiple coaxial TOSAs with the cuboid type TO laser packages stacked in the transceiver housing. The cuboid type TO laser package may thus provide improved thermal characteristics and a reduced size within the optical transceiver.