Abstract:
On utilise l'équipement de mesure (SMC) dans un système de commutation de télécommunications, afin de contrôler si la vitesse des cellules de chacune d'une pluralité de chaînes de cellules individuelles multiplexées dans une même liaison, reste dans les limites sur la base desquelles son multiplexage a été permis. A cet effet, ledit équipement contrôle à la fin de chaque intervalle de mesure (MTI), et pour une pluralité de vitesses de cellules [(MS)/A, (MS/2)/A,...], si les probabilités susceptibles de dépasser ces vitesses de cellules sont dépassées ou non. Si c'est le cas, la vitesse des cellules est limitée par des cellules de dérivation. Ainsi une fonction de répartition de probabilité cumulative complémentaire attendue (par rapport à 1) de la vitesse des cellules est approchée par une fonction en forme de cage d'escalier.
Abstract:
The digital modulator shown in Fig. 2 provides at its output SO a signal whose frequency f1 is equal to the product of a clock frequency f2, applied to its input CLI, a second integer P by which a divider DIV2 divides, and a factor equal to the sum of another integer N′ by which a divider DIV3 divides, and a rational number (F′+M)/P. Because the latter is smaller than unity use can be made of a well known accumulator ACC and of a single-cycle removing circuit CRC. With f2=3.25 MHz, P=16, N′=17, the following modulated carrier frequencies may for instance be obtained : wherein M = with m varying between 0 and 519 and
Abstract:
Asynchronous time division system including at least one node with a switching network (BSN) to which a plurality of user stations (US1/N) are coupled via transmission links and which is adapted to interconnect user stations. At least one (US4) of these user stations is a clock station providing clock information, and upon the establishment of a connection between a plurality of other user stations (US1/3), with the purpose of exchanging synchronous data, each of these stations establishes a connection with this clock station.
Abstract:
Système de commutation (SW) pour le transfert de paquets de signaux numériques comportant une partie en-tête contenant des information d'acheminement provenant d'une pluralité de terminaux d'entrée (R1 à R16) vers une pluralité de terminaux de sortie (T1 à T16), la destination du terminal de sortie pour un paquet donné étant choisi selon les informations d'acheminement dudit paquet. Le système comporte une pluralité de mémoires (M1 à M8) dont chacune est divisée en une pluralité de zones de stockage, chacune étant associée à un terminal de sortie respectif, des circuits de répétion (RC1 à RC16) servant à diviser chaque paquet reçu en une pluralité de sous-paquets, des circuits de commande (CC1 à CC8) et des circuits de transmission (TC1 à TC16) afin de reconstituer un paquet à partir de ces sous-paquets. Selon les instructions des circuits de commande qui fonctionnent selon les informations d'acheminement d'un paquet, les sous-paquets faisant partie de ce paquet sont transmis aux mémoires respectives et chargés dans les zones de stockage de celle-ci en fonction du terminal de sortie de destination.
Abstract:
The digital modulator shown in Fig. 2 provides at its output SO a signal whose frequency f1 is equal to the product of a clock frequency f2, applied to its input CLI, a second integer P by which a divider DIV2 divides, and a factor equal to the sum of another integer N′ by which a divider DIV3 divides, and a rational number (F′+M)/P. Because the latter is smaller than unity use can be made of a well known accumulator ACC and of a single-cycle removing circuit CRC. With f2=3.25 MHz, P=16, N′=17, the following modulated carrier frequencies may for instance be obtained : wherein M = with m varying between 0 and 519 and
Abstract translation:图1所示的数字调制器。 2在其输出端SO提供一个信号,其频率f1等于应用于其输入CLI的时钟频率f2的乘积,除法器DIV2除以的第二整数P和等于另一整数N之和的因子 分频器DIV3分频,有理数(F min + M)/ P。 由于后者小于单位,所以可以使用众所周知的累加器ACC和单周期去除电路CRC。 对于f2 = 3.25MHz,P = 16,N min = 17,可以获得以下调制的载波频率:其中M = @@@,其中m在0和519之间变化,并且
Abstract:
Conditional multiplexer wherein an input bitstream having a variable bitrate is allowed as part of a multiplexed output bitstream of input bitstreams or not depending on the result of an operation performed by processing means (TPR1) and which consists in calculating an estimated output bandwidth (B2) of said output bitstream from the mean values (mi) and variances (vi) of the probability distribution functions of the bitrates of said input bitstreams and in the subsequent comparison of said estimated output bandwidth (B2) with the maximum allowable output bandwidth (B). Further processing means (RPR1) continuously measure the mean and variance parameters and continuously verify if the sources of the bitstreams operate within the assigned bandwidths.
Abstract:
Conditional multiplexer wherein an input bitstream having a variable bitrate is allowed as part of a multiplexed output bitstream of input bitstreams or not depending on the result of an operation performed by processing means (TPR1) and which consists in calculating an estimated output bandwidth (B2) of said output bitstream from the mean values (mi) and variances (vi) of the probability distribution functions of the bitrates of said input bitstreams and in the subsequent comparison of said estimated output bandwidth (B2) with the maximum allowable output bandwidth (B). Further processing means (RPR1) continuously measure the mean and variance parameters and continuously verify if the sources of the bitstreams operate within the assigned bandwidths.
Abstract:
Correction arrangement, for an amplifier, with two correction circuits (CS1,PM2,NM3/2,CS2,NM4,PM4/3) each connected in parallel across the output stage (PM1,NM1) of the amplifier provided with an input differential amplifier stage (A1), with two differential amplifiers (A2/3) constituting an intermediate stage and with the output stage constituted by the series connection of a PMOS transistor (PM1) and an NMOS transistor (NM1) the junction point (VOUT) of which is connected to the input stage via a feedback circuit (FC). Each correction circuit is able to measure the DC current (I1;I2) through an output transistor (PM1, NM1), to compare a measuring DC current (I3;I4) derived from this measured DC current with a reference DC current (I5;I6) and to change the DC voltage on the gate of the other output transistor (NM1;PM1) in function of the difference and to thus produce a correcting function on the amplifier through the feedback circuit.
Abstract:
The bistate device has a bistate circuit (FF) which when operated brings its outputs (OUT1/2) substantially on respective ones of two voltages (VDD, VSS) by which it is fed, and control means (C) to prevent the operation of this circuit and to thereby bring these outputs (OUT1/2) on a predetermined voltage (VAG) halfway between these two voltages (VDD, VSS) and to disconnect one (VSS) of these two voltages (VDD, VSS) from the circuit, and to enable the operation of the circuit and to thereby disconnect and connect the predetermined voltage (VAG) and this one voltage respectively.
Abstract:
The element moving device includes a supporting structure (29, 30) movable in the X-direction on guide rods (27, 28) and carrying an axle (40) on which an assembly comprising three gear wheels (41, 42, 43) is freely rotatable. Two wheels (41, 42) are engaged by corresponding conveyor belts (44, 45) extending in the X-direction and able to control the rotation or standstill of the axle. The third wheel (43) is coupled to a carriage (54) movable in the Y-direction by a third conveyor belt (48) and carrying the element to be displaced. Each of the two conveyors (41, 42) is controlled by a pair of stepper motors (10, 16) which allow small and accurate displacements to be realized.