Abstract:
A self-laminating rotating cable marker label is constructed of a transparent film having a first adhesive area, an adhesive-free smooth area, and a second adhesive area. A print-on area forms one side of the transparent film, the print-on area adapted to receive indicia identifying the cable about which the marker label is applied. A perforation extends across the transparent film providing a line of separation of the transparent film. When wrapped around a cable, the second adhesive area overlies the print-on area such that the cable identifying indicia is visible through the transparent second adhesive area. As the transparent film is wrapped around the cable, the first adhesive area adheres to the cable. The remainder of the transparent film is rotated, breaking the perforation, whereby the smooth area of the film in contact with the cable provides smooth rotation of the label around the cable.
Abstract:
Certain embodiments of the present invention provide a hook and loop tie for securing a bundle of cables. The hook and loop tie comprises a loop component, a hook component, and a non-slip component. The loop component has a first end, a second end opposite the first end, and a plurality of loop fastening elements. The hook component is affixed to the loop component, extends from the first end of the loop component toward the second end of the loop component, and has a plurality of hook fastening elements. The non-slip component is affixed to the loop component, extends from the second end of the loop component toward the first end of the loop component, and overlaps at least a portion of the hook component.
Abstract:
A method and apparatus for verifying the termination quality of an optical fiber interface in a fiber optic connector is provided. The test apparatus generally comprises a light source providing light to a test connector which contains an interface of a stub fiber of a fiber optic connector and a field fiber of a fiber optic cable. The portions of the test connector that are located between the optical fiber optic interface and the light detector are transmissive while other portions of the test connector located near the interface are highly reflective.
Abstract:
A self-laminating rotating cable marker label is constructed of a transparent film having a first adhesive area, an adhesive-free smooth area, and a second adhesive area. A print-on area forms one side of the transparent film, the print-on area adapted to receive indicia identifying the cable about which the marker label is applied. A perforation extends across the transparent film providing a line of separation of the transparent film. When wrapped around a cable, the second adhesive area overlies the print-on area such that the cable identifying indicia is visible through the transparent second adhesive area. As the transparent film is wrapped around the cable, the first adhesive area adheres to the cable. The remainder of the transparent film is rotated, breaking the perforation, whereby the smooth area of the film in contact with the cable provides smooth rotation of the label around the cable.
Abstract:
A communication jack (10) is, provided with plug interface contacts (16a-16h) that have a short conductive signal pathway ('A') between a plug- jack interface and crosstalk compensation provided on a printed circuit board (18) within the jack. Contacts (16a, 16h) of the jack are specially designed not to take a permanent set if a six-position plug or an eight-position plug is inserted into an eight-position jack (10). A printed circuit board (18) in the jack (10) is placed at an angle, shortening the conductive pathway ('A') between plug contacts and the printed circuit board (18).
Abstract:
An AC common mode backchannel signaling system is used to provide outlet ID information in a communication network. Wire pairs of a communication network are used to support the AC common mode backchannel signaling system, while also supporting Ethernet communications as well as Power Over Ethernet (PoE). Query and receiving AC circuitry is provided in an intelligent patch panel, and outlet ID receiving and response AC circuitry is provided in communication outlets. These two sets of AC circuitry use the AC common mode backchannel signaling system to communicate with one another, without disrupting PoE or Ethernet signaling on the wire pairs of the network.
Abstract:
A dual-sided IDC connector for use in connecting electrical components to field wiring is described. One side of the IDC connector may be factory-wired to an electrical component. A second side of the IDC connector may be field-wired in an end-wiring or a through-wiring configuration. The second side of the IDC connector may have multiple covers to minimize the effort required by a field technician to terminate the field-wiring. The IDC connector may be easily mounted to existing raceways, outlet strips, and junction boxes.
Abstract:
A communications connector with a flexible printed circuit board is provided. The flexible printed circuit board is electronically and mechanically connected to the plug interface contacts of the jack near the plug/jack interface, in order to provide effective crosstalk compensation. The flexible printed circuit board has fingers at one end allowing it to flex as individual plug interface contacts are depressed when a plug is installed into the jack. The flexible printed circuit board, or a flexible portion of a printed circuit board, is provided with elongated extensions for certain conductors to accommodate the connection of six-contact or eight-contact plugs to the connector.
Abstract:
A method and apparatus are provided for monitoring and reporting cable connectivity such as patch panel port-level connectivity on a real-time basis. For patch panel systems, the approach is based upon a distributed architecture that may be modularly scalable and may reduce, if not eliminate, the need for a centralized signal processor and complex cabling between patch panels and the centralized signal processor. Each patch panel may determine port level connectivity independently. Polling delays and polling-related overhead processing may be reduced or eliminated by supporting real-time monitoring of port connectivity at the port level. The approach provides improved real-time reporting of patch panel connectivity with reduced cabling complexity, increased reliability, and decreased maintenance costs. In addition, the approach is compatible with (i.e., may communicate with and be controlled by) a multipurpose network management system (NMS). In addition, a compatible revision system is provided.
Abstract:
A push-pull plug has an outer housing (14) that may be moved forwardly and backwardly along a plug housing (12). When the outer housing is in its forward position, a latch arm (28) is in an upward or mated position and the plug will stay mated to a jack when the plug is inserted into the jack. When the outer housing is moved backwardly, cam surfaces (50) on the outer housing push cam followers (48) on the latch arm downwardly, moving the latch arm and latch to a downward or unmated position. The plug may then be removed from a jack as the outer housing is pulled. Plugs according to the present invention may be adapted for use with an insertion and removal tool (52) according to the present invention.