Abstract:
A phase change memory device comprising an electrode, a phase change layer crossing and contacting the electrode at a cross region thereof, and a transistor comprising a source and a drain, wherein the drain of the transistor electrically connects the electrode or the phase change layer is disclosed.
Abstract:
A phase change memory device is disclosed, including a substrate, a phase change layer over the substrate, a first electrode electrically connecting a first side of the phase change layer, a second electrode electrically connecting a second side of the phase change layer, wherein the phase change layer composes mainly of gallium (Ga), antimony (Sb) and tellurium (Te) and unavoidable impurities, having the composition range of GaxTeySbz, 5
Abstract:
A phase change memory (PCM) cell fabricated by etching a tapered structure into a phase change layer, and planarizing a dielectric layer on the phase change layer until a tip of the tapered structure is exposed for contacting a heating electrode. Therefore, the area of the exposed tip of the phase change layer is controlled to be of an extremely small size, the contact area between the phase change layer and the heating electrode is reduced, thereby lowering the operation current.
Abstract:
A method and a device for detecting a synchronization signal with a high identification rate are provided, which are suitable for a wide-area Orthogonal Frequency Division Multiplexing (OFDM) system. The method and device can precisely detect information of a synchronization signal, without being interfered by transmission channels and noises in an external environment. Three sliding windows are used to obtaining a balance value as an offset value for the output signal of the method and the device. A peak position of the output signal is identified and then compensated for a delay caused by the length of one of the sliding windows. Such a position is an edge of the synchronization signal.
Abstract:
An apparatus for data processing in a multi-channel communication system is provided. The apparatus includes an encoder configured to encode a number of bits for transmission via channels in the multi-channel communication system into coded bits and split the coded bits into a number of first sets of bits at a first ratio, a number of first rate units coupled to the encoder, each of the first rate units being configured to adjust one set of the first sets of bits in size at at least one rate, and a controller configured to assign the first ratio to the encoder and the at least one rate to each of the first rate units based on conditions of the channels.
Abstract:
A phase-change memory layer and method for manufacturing the same and a phase-change memory cell are provided. The phase-change memory layer is crystallized by adding one or more heterogeneous crystals that do not react with phase-change materials as the crystal nucleus, so as to reduce the time for transforming to the crystalline state from the amorphous state.
Abstract:
A method for a base station to transmit data, the data to be relayed by a relay station to user equipment, the method including: encoding, based on an identification of the relay station or an identification of the user equipment, control information that indicates resource allocation for the relay station; and transmitting the control information to the relay station.
Abstract:
A method for reporting uplink control information and a wireless communication device using the same are disclosed. The wireless communication device supports multiple component carriers (CC), and the proposed method includes following steps. When a base station requests the wireless communication device to transmit aperiodic channel state information (CSI) report of one or more downlink CC to the base station, but the CSI of the downlink CCs may be invalid, following steps are executed on the downlink CC. Full payloads of channel quality indicator (CQI)/precoding matrix indicator (PMI) corresponding to a plurality of selectable RI values of the downlink CC are respectively calculated. Additionally, an RI value of the downlink CC is selected according to the full payloads of the CQI/PMI corresponding to the selectable RI values.
Abstract:
A method for partitioning a soft buffer in a time-division duplex system and an apparatus using the same are disclosed. The method includes the following steps. A total number of soft channel bits, a maximum number of transport blocks transmittable to a user equipment (UE) in a transmission time interval (TTI), a maximum number of downlink (DL) hybrid automatic retransmit request (HARQ) processes, and a configured maximum number of HARQ processes are determined. A partition size of the soft buffer is selected according at least to the total number of soft channel bits, the maximum number of transport blocks transmittable to the UE in the TTI, the maximum number of DL HARQ processes, and the preconfigured maximum number of HARQ processes.
Abstract:
A tunneling magnetoresistance sensor including a substrate, an insulating layer, a tunneling magnetoresistance component and an electrode array is provided. The insulating layer is disposed on the substrate. The tunneling magnetoresistance component is embedded in the insulating layer. The electrode array is formed in a single metal layer and disposed in the insulating layer either below or above the TMR component. The electrode array includes a number of separate electrodes. The electrodes are electrically connected to the tunneling magnetoresistance component to form a current-in-plane tunneling conduction mode. The tunneling magnetoresistance sensor in this configuration can be manufactured with a reduced cost and maintain the high performance at the same time.