Abstract:
A clutch assembly of an automatic transmission includes a clutch drum having a slanted inner surface at a corner formed by circumferentially bending an circumferential edge of the clutch drum, a plurality of friction members alternately arranged in the clutch drum, a piston for actuating the friction members, the piston contacting the friction members, and a cushion ring having a circumferentially slanted outer surface corresponding to the slanted inner surface of the clutch drum, the cushion ring being installed into the clutch drum so as to contact the slanted outer surface of the cushion ring with the slanted inner surface of the clutch drum.
Abstract:
A dual-port SRAM device includes a substrate having a field region and first to fourth active fins extending in a first direction, and a unit cell having first to eighth gate structures. The first and second gate structures are on the first, second and fourth active fins, and extend in a second direction crossing the first direction. The third and fourth gate structures are on the first, second and third active fins, and extend in the second direction. The fifth and sixth gate structures are on the third active fin, and extend in the second direction. The seventh and eighth gate structures are on the fourth active fin, and extend in the second direction. The sixth gate structure is electrically connected to the third gate structure through the first contact plug, and the seventh gate structure is electrically connected to the second gate structure through a second contact plug.
Abstract:
The present invention relates to a welding helmet including a wireless auto light shield part and a controlling method thereof. More particularly, the present invention relates to a welding helmet including a wireless auto light shield part capable of improving convenience of a welding operation, protecting eyes of a worker from direct light during welding operation, and preventing frost from being formed on the viewing window by shielding or opening a viewing window through elevation of a shield glass while automatically driving the light shield part in a wireless scheme by operation of a torch switch, and a method of controlling the same.
Abstract:
Semiconductor devices are provided. The semiconductor devices include a first fin; a first gate electrode intersecting the first fin; a first elevated source and/or drain on respective sides of the first gate electrode on the first fin; and a first field dielectric film adjacent the first fin. The first field dielectric film includes a first part below a top surface of the first fin and a second part protruding from the first part and above a top surface of the first fin that makes contact with the first elevated source and/or drain.
Abstract:
A semiconductor device fabrication method includes sequentially forming a hard mask layer and a sacrificial layer on a substrate, forming an upper mandrel which includes first to third upper sub-mandrels on the sacrificial layer, the first to third upper sub-mandrels extending in a first direction and being spaced apart from each other in a second direction, a width of the first upper sub-mandrel being smaller than widths of the second and third upper sub-mandrels, forming first spacers on sidewalls of each of the upper sub-mandrels, removing the upper mandrel, etching the sacrificial layer using the first spacers as etching masks to form a lower mandrel that includes a plurality of sub-mandrels, forming second spacers on sidewalls of the lower sub-mandrels, removing the lower mandrel, patterning the hard mask layer and the substrate using the second spacers as etching masks to form first to tenth fins which extend alongside each other in the first direction and are spaced apart from each other in the second direction, removing the first, second, fifth and eighth fins, and forming a first gate electrode that intersects the third, fourth, sixth and seventh fins, and a second gate electrode that intersects the sixth, seventh, ninth and tenth fins while not intersecting the third and fourth fins.
Abstract:
The present invention provides a relative humidity and condensed water estimator for a fuel cell and a method for controlling condensed water drain using the same. Here, the relative humidity and condensed water estimator is utilized in control of the fuel cell system involving control of anode condensed water drain by outputting at least two of signals comprising air-side relative humidity, hydrogen-side relative humidity, air-side instantaneous or cumulative condensed water, hydrogen-side instantaneous or cumulative condensed water, instantaneous and cumulative condensed water of the humidifier, membrane water contents, catalyst layer oxygen partial pressure, catalyst layer hydrogen partial pressure, stack or cell voltage, air-side catalyst layer relative humidity, hydrogen-side catalyst layer relative humidity, oxygen supercharging ratio, hydrogen supercharging ratio, residual water in a stack, and residual water in a humidifier.
Abstract:
A method of fabricating a solar cell includes forming a doped portion having a first conductive type on a semiconductor substrate, growing an oxide layer on the semiconductor substrate, forming a plurality of recess portions in the oxide layer, further growing the oxide layer on the semiconductor substrate, forming a doped portion having a second conductive type on areas of the semiconductor substrate corresponding to the recess portions, forming a first conductive electrode electrically coupled to the doped portion having the first conductive type, and forming a second conductive electrode on the semiconductor substrate and electrically coupled to the doped portion having the second conductive type, wherein a gap between the doped portions having the first and second conductive types corresponds to a width of the oxide layer formed by further growing the oxide layer.
Abstract:
A data sampler and a photo detecting apparatus compensate a reference signal with offset information measured from a unit pixel, and compare an offset-compensated reference signal with a data signal, thereby minimizing the impact of an offset occurring with an increase of gain in the data sampler.
Abstract:
Provided are a spot size converter and a method of manufacturing the spot size converter. The method includes stacking a lower clad layer, a core layer, and a first upper clad layer on a substrate, tapering the first upper clad layer and the core layer in a first direction on a side of the substrate, forming a waveguide layer on the first upper clad layer and the lower clad layer, and etching the waveguide layer, the first upper clad layer, the core layer, and the lower clad layer such that the waveguide layer is wider than a tapered portion of the core layer on the side of the substrate and has the same width as that of the core layer on another side of the substrate.
Abstract:
A counter circuit includes a first counter and a second counter. The first counter is configured to count a first counter clock signal which toggles with a first frequency to generate upper (N−M)-bit signals of N-bit counter output signals, in response to a first counting enable signal based on a first comparison signal during a coarse counting interval. N and M are natural numbers, N is greater than M, and M is greater than or equal to 3. The second counter is configured to count a second counter clock signal which toggles with a second frequency which is higher than the first frequency to generate lower M-bit signals of the N-bit counter output signals, in response to a second counting enable signal based on the first comparison signal and a second comparison signal during a fine counting interval which follows the coarse counting interval.