Abstract:
In accordance with aspects of the disclosure, a method, apparatus, and computer program product are provided for wireless communication. The method, apparatus, and computer program product may be configured to generate packets, wherein each of the packets comprises a packet header comprising a packet format field comprising a first indicator that indicates whether the packet header comprises a payload length field and whether the packet comprises a payload. The method, apparatus, and computer program product may be further configured to generate a second indicator based on a type of data in the payload, and attach the second indicator to the data.
Abstract:
An apparatus for communications configured to support first and second spread-spectrum channels, each of the first and second channels being based on a different pseudorandom sequence. The apparatus further configured to select one of the first and second channels for communications to avoid a collision of information that would otherwise occur based on their pseudorandom sequences.
Abstract:
Frequency and phase of an output signal is adjusted to track an input signal. A control signal is adjusted to control a frequency of an oscillating signal from which the output signal is derived. In some aspects the frequency of the oscillating signal is adjusted by reconfiguration of reactive circuits coupled to an oscillator circuit. Phase of the output signal may be adjusted based on comparison of the oscillating signal with an adjustable threshold. For example, the adjustable threshold may comprise an adjustable bias signal for a transistor circuit whereby the oscillating signal is provided as an input to the transistor circuit and the output of the transistor circuit provides the output signal.
Abstract:
Phase of an output signal is based on comparison of an oscillating signal with an adjustable threshold. Here, adjustment of the threshold results in a corresponding adjustment of the phase of the output signal. For example, the adjustable threshold may comprise an adjustable bias signal for a transistor circuit whereby the oscillating signal is provided as an input to the transistor circuit and the output of the transistor circuit provides the output signal. In some aspects these phase adjustment techniques may be employed to provide one or more tunable multiphase clocks.
Abstract:
Frequency of an oscillating signal is temporarily adjusted to adjust frequency and/or phase of an output signal. For example, the frequency of the oscillating signal may be adjusted for a very short period of time to adjust the phase of the output signal. In addition, the frequency of the oscillating signal may be temporarily adjusted in a repeated manner to adjust the effective frequency of the output signal. In some aspects the frequency of the oscillating signal is adjusted by reconfiguration of reactive circuits associated with an oscillator circuit.
Abstract:
Various operations may be performed based on distance-related functions associated with two or more devices. For example, one or more distance-based functions may be used to control whether a device is allowed to request another device to perform one or more functions. Similarly, one or more distance-based functions may be used to control whether a device may perform one or more functions requested by another device. A distance-related function may take various form including, for example, a distance between devices, two or more distances between devices, a rate of change in a relative distance between devices, relative acceleration between devices, or some combination of two or more of the these distance-related functions.
Abstract:
A multiple access technique for a wireless communication system establishes separate channels by defining different time intervals for different channels. In a transmitted reference system different delay periods may be defined between transmitted reference pulses and associated data pulses for different channels. In addition, a multiple access technique may employ a common reference pulse for multiple channels in a transmitted reference system. Another multiple access technique assigns different pulse repetition periods to different channels. One or more of these techniques may be employed in an ultra-wide band system.
Abstract:
A multiple access technique for a wireless communication system establishes separate channels by defining different time intervals for different channels. In a transmitted reference system different delay periods may be defined between transmitted reference pulses and associated data pulses for different channels. In addition, a multiple access technique may employ a common reference pulse for multiple channels in a transmitted reference system. Another multiple access technique assigns different pulse repetition periods to different channels. One or more of these techniques may be employed in an ultra-wide band system.
Abstract:
A tunable delay line is calibrated to maintain the delay of the delay line at a desired value or within a desired range of values. In some aspects a signal is passed through a delay line multiple times so that the cumulative delay of the signal through the delay line (e.g., as indicated by a count) may be calculated over a period of time. The count is compared with an expected count and, based on this comparison, the delay of the delay line is adjusted as necessary. In some aspects the signal may comprise a digital signal. In some aspects a delay through a delay line may be calculated based on analysis of amplitude changes in a signal caused by a phase shift imparted on the signal by the delay line. In some aspects a delay line is incorporated into a transmitted reference system to generate and/or process transmitted reference signals.
Abstract:
A tunable delay line is calibrated to maintain the delay of the delay line at a desired value or within a desired range of values. In some aspects a signal is passed through a delay line multiple times so that the cumulative delay of the signal through the delay line (e.g., as indicated by a count) may be calculated over a period of time. The count is compared with an expected count and, based on this comparison, the delay of the delay line is adjusted as necessary. In some aspects the signal may comprise a digital signal. In some aspects a delay through a delay line may be calculated based on analysis of amplitude changes in a signal caused by a phase shift imparted on the signal by the delay line. In some aspects a delay line is incorporated into a transmitted reference system to generate and/or process transmitted reference signals.