Abstract:
A compressor including a shell, and a compression mechanism disposed in the shell including a first scroll member having a first spiral wrap and a second scroll member having a second spiral wrap intermeshed with the first spiral wrap. A drive shaft has a first end engaged with the first scroll member for moving the first scroll member relative to the second scroll member, and a bearing assembly including a bearing housing rotatably supports a second end of the drive shaft. A base is secured to the shell, and a mounting feature formed on either the bearing assembly or the base orients the bearing assembly relative to the base.
Abstract:
A system may include a compressor, a heat exchanger, an expansion device, a lubricant separator, and a flow path. The compressor includes a compression mechanism. The heat exchanger receives compressed working fluid from the compressor. The expansion device is disposed downstream of the heat exchanger. The lubricant separator receives lubricant and working fluid discharged from the compression mechanism and provides separated lubricant to the compression mechanism. The flow path may receive working fluid from the heat exchanger and may provide working fluid to the heat exchanger. The flow path may extend between a first location disposed between the heat exchanger and the expansion device and a second location disposed between the heat exchanger and the compressor. The working fluid from the flow path may absorb heat from the separated lubricant.
Abstract:
A compressor is provided and may include a shell assembly defining a suction pressure region and a discharge pressure region. A first scroll member may include a first discharge port and a first modulation port. A second scroll member may include a first variable volume ratio port. A capacity modulation valve assembly may be in fluid communication with the first modulation port and may be displaceable between open and closed positions to selectively provide communication between a first intermediate compression pocket and the suction pressure region via the first modulation port. A variable volume ratio valve assembly may be in fluid communication with the first variable volume ratio port. The variable volume ratio valve assembly may be displaceable between open and closed positions to selectively provide communication between a second intermediate compression pocket and the discharge pressure region via the first variable volume ratio port.
Abstract:
A compressor may include first and second scrolls, a hub plate and a valve. The first scroll may include an end plate defining first and second sides, a primary discharge passage extending therethrough, and a secondary discharge passage extending therethrough and located radially outward from the primary discharge passage. The hub plate may be mounted to the first scroll and may include first and second opposite sides and a hub discharge passage in fluid communication with the primary discharge passage. The first side of the hub plate may face the second side of the end plate and may include a valve guide extending axially toward the end plate adjacent the hub discharge passage. The valve member may be secured on the valve guide for axial movement between open and closed positions to respectively allow and restrict fluid communication between the secondary discharge passage and the hub discharge passage.
Abstract:
A compressor may include a shell assembly, a compression mechanism and a conduit. The shell assembly may include a fitting through which fluid is received from outside of the compressor. The compression mechanism may be disposed within a chamber defined by the shell assembly. The conduit may extend through the chamber between the fitting and a suction inlet of the compression mechanism and transmit at least a portion of the fluid from the fitting to the suction inlet. The conduit may include an inlet that may be spaced apart from the fitting and an outlet that may engage the compression mechanism.
Abstract:
Anti-wear surface coatings and methods for making them are provided. Such anti-wear surface coatings are particularly suitable for use in a compressor, such as a scroll or rotary compressor. A precursor powder material can be applied via spraying to a wear surface of a metal component of the scroll or rotary compressor. The precursor powder material comprises a powderized thermoplastic polymer ( e.g., PEEK), a first lubricant particle ( e.g., molybdenum disulfide (MoS 2 )) and a second lubricant particle ( e.g., polytetrafluoroethylene (PTFE)), which is heated to form a substantially uniform coating covering the underlying metal component having a thickness of less than or equal to about 0.006 inches (about 152 μm). The anti-wear surface coating can be used on a face seal for a bellows-type shaft seal for compressors.
Abstract:
A compressor may include a shell, a compression mechanism, and a suction passageway. The shell may include an inlet port. The compression mechanism may be disposed within the shell and may include a suction inlet. The suction passageway may include a first portion, a second portion, and an intermediate portion. The first portion may be fluidly coupled to the inlet port. The second portion may be fluidly coupled to the suction inlet of the compression mechanism. The intermediate portion may be disposed between the first and second portions and may be movable between a first position in which the intermediate portion engages the first and second portions and a second position in which the intermediate portion is disengaged from at least one of the first and second portions.
Abstract:
A compressor may include a first scroll member, a second scroll member and a seal engaged with the second scroll member. The first scroll member may include a first end plate having a first spiral wrap extending therefrom. The second scroll member may be supported relative to the first scroll member and may include a second end plate having a second spiral wrap extending therefrom and meshingly engaged with said first spiral wrap. The second end plate may define a discharge port, bypass porting and a biasing passage. The biasing passage may be in communication with the bypass porting during a portion of a compression cycle of the compressor. The seal and the second scroll member may define an axial biasing chamber in communication with the biasing passage.
Abstract:
Methods of removing moisture from a compressor using a sorbent technology are provided. A dehydration device incorporating the sorbent technology is disposed in a system that contains a hygroscopic fluid. By passing the hygroscopic fluid over the sorbent technology, moisture is removed from the hygroscopic fluid. The systems include sealed devices and integral components for heating, ventilation, and air conditioning (HVAC) systems and refrigeration devices.
Abstract:
Aluminum alloys are provided that have improved fluidity and elongation, as well as freedom of die soldering. The aluminum alloys are particularly suitable for die-casting of structural components. The aluminum alloy includes silicon at from about 8 weight % to about 11 weight %; manganese at from about 0.8 weight % to about 1.9 weight %, iron at from about 0.1 weight % to about 0.5 weight %, magnesium at from about 0.2 weight % to about 0.7 weight %, boron at from about 0.002 weight % to about 0.15 weight %, strontium at from about 0.006 weight % to about 0.017 weight %, less than about 0.25 weight % copper, less than about 0.35 weight % zinc, less than about 0.25 weight % titanium, and a balance of aluminum. Methods related to the aluminum alloys are also provided.