Abstract:
Stereoscopic display system assemblies may be configured to have optimal performance with passive, circular analyzing, cinema eyewear. They may comprise non-twisted electrically controlled birefringent liquid crystal modulators oriented at ±45° to the polarizer orientation of the eyewear. Exemplary embodiments may include single half-wave modulators with a crossing (i.e. negating) quarter wave films. The natural polarization state of the LCD may be rotated and clean-up when necessary to cross with the horizontal eyewear polarizer orientation. In an embodiment, the LC modulator substrate is positioned outermost for anti-reflection coating tolerance, durability and touch sensitivity.
Abstract:
Polarization preserving front projection screens and diffusers provide optimum polarization preservation for stereoscopic 3D viewing, as well as improved light control for enhanced brightness, uniformity, and contrast for both 2D and 3D systems. Generally, the disclosed screens direct light from a projector toward viewers within a diffusion locus, while maintaining optimum gain characteristics. More specifically, light incident on a region of the front projection screen from a predetermined projection direction is reflected by an engineered surface to a predetermined diffusion locus after undergoing substantially single reflections. The engineered surface, comprised of generating kernels, is used to optimally diffuse illumination light into a range of viewing angles, within the diffusion locus, with suitable gain profile, while optimally preserving polarization for 3D applications. Such a screen, when combined with matched polarization analyzing eyewear, provides extremely low cross-talk from any observation point.
Abstract:
A polarization conversion system (PCS) is located in the output light path of a projector. The PCS may include a polarizing beam splitter, a polarization rotating element, a reflecting element, and a polarization switch. Typically, a projector outputs randomly-polarized light. This light is input to the PCS, in which the PCS separates p-polarized light and s-polarized light at the polarizing beam splitter. P-polarized light is directed toward the polarization switch on a first path. The s-polarized light is passed on a second path through the polarization rotating element (e.g., a half-wave plate), thereby transforming it to p-polarized light. A reflecting element directs the transformed polarized light (now p-polarized) along the second path toward the polarization switch. The first and second light paths are ultimately directed toward a projection screen to collectively form a brighter screen image in cinematic applications utilizing polarized light for three-dimensional viewing.
Abstract:
Exemplary embodiments of systems for high-performance compensated shutter lens designs, may include compensators for compensating for performance problems that stem from real-world performance limitations in present shutter-glass designs. In an embodiment, a shutterglass lens may include first and second pi-cells and first and second compensators. The pi-cells and the compensators of the shutterglass lens may be stacked together within the shutterglass lens.
Abstract:
A polarization switch provides substantially ideal binary polarization switching over a broad range of wavelengths using a polarization modulation wheel having at least one retarder stack that transforms polarization. Using the polarization modulation wheel in a polarization system provides a high throughput polarization switch and operates over a wide range of incidence angles while providing substantially continuous and smooth polarization output for each component for any selected polarization basis set. The polarization modulation wheel is well-suited for stereoscopic polarized projection applications.
Abstract:
Polarization preserving front projection screens and diffusers provide optimum polarization preservation for stereoscopic 3D viewing, as well as improved light control for enhanced brightness, uniformity, and contrast for both 2D and 3D systems. Generally, the disclosed screens direct light from a projector toward viewers within a diffusion locus, while maintaining optimum gain characteristics. More specifically, light incident on a region of the front projection screen from a predetermined projection direction is reflected by an engineered surface to a predetermined diffusion locus after undergoing substantially single reflections. The engineered surface, comprised of generating kernels, is used to optimally diffuse illumination light into a range of viewing angles, within the diffusion locus, with suitable gain profile, while optimally preserving polarization for 3D applications. Such a screen, when combined with matched polarization analyzing eyewear, provides extremely low cross-talk from any observation point.
Abstract:
A polarization conversion system separates light from an unpolarized image source into a first state of polarization (SOP) and an orthogonal second SOP, and directs the polarized light on first and second light paths. The SOP of light on only one of the light paths is transformed to an orthogonal state such that both light paths have the same SOP. A polarization modulator temporally modulates the light on the first and second light paths to first and second output states of polarization. First and second projection lenses direct light on the first and second light paths toward a projection screen to form substantially overlapping polarization encoded images. The polarization modulator may be located before or after the projection lenses. The polarization-encoded images may be viewed using eyewear with appropriate polarization filters.
Abstract:
Chemically-bonded retarder stacks are provided in this disclosure. A first organic layer having a first molecular orientation is chemically welded to a second organic layer having a second molecular orientation. The first and second molecular orientations are crossed when the organic layers are laminated. The first and second organic layers may be polycarbonate films, which can be welded together using a suitable solvent.
Abstract:
Disclosed is a method for driving at least one shutter glass lens having a property of light retardation that is variable at least according to the wavelength of the light passing through it, the shutter glass lens having an LC cell driven to a relatively “on” or a relatively “off” state according to a voltage applied across it. The lens is further operable to pass temporally modulated color display images of at least first, second, and third wavelengths being applied to a display surface, the method comprising first, second, and third holding voltages to the LC cell in decreasing magnitude to stabilize the retardation of the lens for first, second, and third display image wavelengths.
Abstract:
Beamsplitters are frequently used in projectors based on reflective liquid crystal display for separating input and output light, and more recently for color management systems. Rather stack filters are used in such systems to orthogonally polarize primary colors, converting polarizing beamsplitters to color splitters and combiners. Geometric polarization rotations induced by beamsplitters at moderate f-numbers have the effect of significantly degrading performance. Because retarder stacks in general rely on a specific input polarization to perform properly, such skew rays are responsible for color cross-talk. Retarder stacks designed according to the present invention are sensitive to the symmetries that exist between input and output polarizer configurations. These stacks provide the polarization transformations that will compensate for skew rays, such that normal incidence performance is maintained for all incident light.