Abstract:
The invention relates to a glass-crystalline particle including a glass component and a crystalline component, wherein the crystalline component includes one or more metal oxides, wherein the metal is selected from the group consisting of: Zn, Ca, Sr, Mg, Ba, and mixtures thereof.
Abstract:
The present invention provides a fire retardant composition comprising at least one frit in combination with at least one additive, wherein the frit and the additive are selected such that they undergo one or more reactions under fire conditions to form a structured composition which reduces smoke and toxic gas emissions. A method for enhancing the fire resistance of a material or reducing the surface spread of flame of a material is also described.
Abstract:
A hair care composition having a conditioning active comprising a sucrose polyester having a melting point greater than about 30° C, an IBAR greater than about 5, an IV of about 3 to about 70, and an aqueous carrier, and may further comprise optional ingredients including but not limited to, silicone, cationic polymers, and fatty alcohols. The composition can also comprise a blend of sucrose polyesters, wherein the blend comprises two or more sucrose polyesters, wherein at least one sucrose polyester has a melting point greater than about 30° C, an IBAR greater than about 5, an IV of about 3 to about 70, and at least one sucrose polyester has an IBAR between about 1 and about 8, and an IV between about 1 and about 135, and wherein the sucrose polyester blend has an IBAR of at least 5 and an IV of about 1 and about 135.
Abstract:
A hair care composition having a conditioning active comprising a sucrose polyester having a melting point greater than about 30° C, an IBAR greater than about 5, an IV of about 3 to about 70, and an aqueous carrier, and may further comprise optional ingredients including but not limited to, silicone, cationic polymers, and fatty alcohols. The composition can also comprise a blend of sucrose polyesters, wherein the blend comprises two or more sucrose polyesters, wherein at least one sucrose polyester has a melting point greater than about 30° C, an IBAR greater than about 5, an IV of about 3 to about 70, and at least one sucrose polyester has an IBAR between about 1 and about 8, and an IV between about 1 and about 135, and wherein the sucrose polyester blend has an IBAR of at least 5 and an IV of about 1 and about 135.
Abstract:
The invention discloses processes for thermal transfer patterning of a nanoparticle layer and a corresponding proximate portion of a carrier layer, and optionally additional transfer layers, together onto a thermal imaging receiver. The invention is useful for dry fabrication of electronic devices. Additional embodiments of the invention include multilayer thermal imaging donors comprising in layered sequence: a base film, a carrier layer and a nanoparticle layer. The carrier layer can be a dielectric or conducting layer. When the carrier layer is a dielectric layer, the base film includes a light attenuating agent in the form of a dye or pigment.
Abstract:
Disclosed is an improved process for making highly dispersible, spherical silver particles. In particular, the invention is directed to a process for making silver particles, which are very high solids and highly ordered. The silver particles formed are particularly useful in electronic applications. The particles are produced by reacting on aqueous nitric acid solution of a silver salt with a reducing solution comprising ascorbic acid with a surface modifier and a particle size modifier at a pH of less than or equal to 6.
Abstract:
Disclosed is an improved process for making highly dispersible, spherical silver particles. In particular, the invention is directed to a process for making silver particles, which are very high solids and highly ordered. The silver particles formed are particularly useful in electronic applications.
Abstract:
A method of preventing or reducing food product contamination comprising contacting either a surface within a processing facility, a food processing equipment surface, an already-cooked food or other ready-to-eat product surface, or a combination thereof with an electrolyzed aqueous solution which is lethal for at least one pathogen and is not harmful for human consumption.
Abstract:
According to one embodiment of the invention, a method for fabricating a MIM capacitor in a semiconductor die includes a step of depositing a first interconnect metal layer. The method further includes depositing a high-k dielectric layer comprising AlNx (aluminum nitride) on the first interconnect layer. The method further includes depositing a layer of MIM capacitor metal on the high-k dielectric layer. The method further includes etching the layer of MIM capacitor metal to form an upper electrode of the MIM capacitor. According to this exemplary embodiment, the first interconnect metal layer, the high-k dielectric layer, and the layer of MIM capacitor metal can be deposited in a PVD process chamber. The method further includes etching the high-k dielectric layer to form a MIM capacitor dielectric segment and etching the first interconnect metal layer to form a lower electrode of the MIM capacitor.
Abstract:
In one embodiment, the invention is a nonflowable gel composition including a vegetable oil and a thermoplastic elastomer. The nonflowable gel composition is characterized by its inability to flow when subjected to pressure. In another embodiment, the invention is a resilient gel composition including a vegetable oil and a thermoplastic elastomer. The resilient gel composition is characterized by its ability to recover its size and form following deformation. In another embodiment, the invention is a support surface for supporting the human body, including the composition and a holding structure for holding structure for holding the composition.