Abstract:
The present disclosure relates to methods for separating and purifying a long chain diacid from other long chain diacids, monocarboxylic acids, hydroxyl acids or alkanes by simulated or actual moving bed chromatography.
Abstract:
Disclosed herein are methods for recovering phosphorus-containing ligand from mixtures comprising organic mononitriles and organic dinitriles, using liquid-liquid extraction. Also disclosed are treatments to enhance extractability of the phosphorus-containing ligand.
Abstract:
This document describes biochemical pathways for producing adipyl-[acp] and either hexanoic acid or acetic acid from a long chain acyl-[acp] such as dodecanoyl-[acp] or octanoyl-[acp] using a polypeptide having pimeloyl-[acp] synthase activity and biochemical pathways for converting adipyl-[acp] and/or hexanoic acid to one of more of adipic acid, 6-aminohexanoic acid, 6-hydroxyhexanoic acid, hexamethylenediamine, caprolactam, and 1,6-hexanediol.
Abstract:
The present invention relates to an improved process for addition of hydrogen cyanide across olefins and, in particular, to the use of a specific aluminum oxide to catalyze the reaction. The aluminum oxide catalyst must have total alkali metal and/or alkaline earth metal content, measured in the form of alkali metal oxide and/or alkaline earth metal oxide, of less than 3,000 ppm by weight.
Abstract:
Fibers, fabrics and other articles including a polyurethaneurea that is the reaction product of (a) a prepolymer including the reaction product of (i) a polyol including a copolymer of tetrahydrofuran and 3-methyltetrahydrofuran having a number average molecular weight of 1000 to 2000 and (ii) a diisocyanate; and (b) a chain extender, are provided.
Abstract:
This document describes materials and methods for, for example, producing 6-hydroxyhexanoic acid using a β-ketothiolase or synthase and an alcohol O-acetyltransferase to form a 6-acetyloxy-3-oxohexanoyl-CoA intermediate. This document describes biochemical pathways for producing 6-hydroxyhexanoic acid using a β-ketothiolase or synthase and an alcohol O-acetyltransferase to form a 6-acetyloxy-3-oxohexanoyl-CoA intermediate. 6-hydroxyhexanoic acid can be enzymatically converted to adipic acid, caprolactam, 6-aminohexanoic acid, hexamethylenediamine or 1,6-hexanediol. This document also describes recombinant hosts producing 6-hydroxyhexanoic acid as well as adipic acid, caprolactam, 6-aminohexanoic acid, hexamethylenediamine and 1,6-hexanediol.
Abstract:
This document describes biochemical pathways for producing 6-hydroxyhexanoic acid using a monooxygenase to form a 7-hydroxyoctanoate intermediate, which can be converted to 6-hydroxyhexanoate using a polypeptide having monooxygenase , secondary alcohol dehydrogenase , or esterase activity. 6-hydroxyhexanoic acid can be enzymatically converted to adipic acid, caprolactam, 6-aminohexanoic acid, hexamethylenediamine or 1,6-hexanediol. This document also describes recombinant hosts producing 6-hydroxyhexanoic acid as well as adipic acid, caprolactam, 6-aminohexanoic acid, hexamethylenediamine and 1,6-hexanediol.