Abstract:
Briefly described, embodiments of this disclosure include a yam twisting or cabling apparatus, methods of twisting or cabling yarn, and the like.
Abstract:
Included are articles such as garments including polymer film compositions to alter the stress profile of the garment which is exhibited during wear of the garment. The polymer film may be bonded to the fabric to provide a fabric/film laminate.
Abstract:
The invention provides an integrated, continuous process for the production of 3-pentenenitrile, the refining of 3-pentenenitrile, and the refining of 2-methyl-3-butenenitrile, the process comprising: (a) contacting, in a reaction zone, a hydrogen cyanide-containing feed, a butadiene-containing feed, and a catalyst composition, wherein the catalyst composition comprises a zero-valent nickel and at least one bidentate phosphorus-containing ligand selected from the group consisting of a phosphite, a phosphonite, a phosphinite, a phosphine, a mixed phosphorus-containing ligand, and combination thereof; (b) maintaining a residence time in the reaction zone sufficient to convert about 95% or more of the hydrogen cyanide and to produce a reaction mixture comprising 3-pentenenitrile and 2-methyi-3-butenenitrile, wherein the 2-methyl-3- butenenitrile concentration is maintained below about 15 weight percent of the total mass of the reaction mixture; (c) distilling the reaction mixture to obtain a first stream comprising 1,3- butadiene, a second stream comprising 3-pentenenitrile, 2-methyl-3-butenenitrile, (Z)-2-methyl-2-butenenitrile, and optionally 1,3-butadiene, and a third stream comprising the catalyst composition; (d) distilling the second stream to obtain a fourth stream comprising 1,3- butadiene, a fifth stream comprising 2-methyl-3-butenenitrile, (Z)-2-methyl-2- butenenitrile, and optionally 1,3-butadiene, and a sixth stream comprising 3- pentenenitrile; and (e) distilling the fifth stream to obtain a seventh stream comprising 1,3- butadiene, an eighth stream comprising (Z)-2-methyl-2-butenenitrile, and a ninth stream comprising 2-methyl-3-butenenitrile.
Abstract:
Disclosed herein are nonwoven fabric composites comprising layers of spunbond and meltblown nonwoven webs. Such composites are prepared by forming or assembling the layers of the composite such that there is at least one outer layer of spunbond fibers disposed on at least one inner meltblown layer. The at least one outer layer comprises substantially parallel stripes of spunbond, continuous filament fibers with at least two different types of stripes being used. The stripes of fibers within the spunbond layer(s) are also predominately oriented in the machine direction of the nonwoven fabric composite. All layers of the fabric composites herein are bonded together via thermal, adhesive, ultra-sonic or mechanical bonding means. Such composites can be fashioned to vary the ratio of cross direction stretch to machine direction stretch.
Abstract:
A catalyst composition and a process for using it to decompose nitrous oxide into nitrogen and oxygen are disclosed. The catalyst composition has surface area of about 1 to about 200 m2/g after exposure to a calcination temperature of between about 4000C and about 9000C, or about 1 to about 100 m2/g after exposure to a calcination temperature of between about 400 0C and about 95O°C.
Abstract:
Knit fabrics and socks made therefrom and a process for producing such articles are disclosed. The fabrics are constructed from blended yarns containing at least 30% by weight high tensile nylon, which imparts abrasion resistance, and at least one companion fiber, which is chosen to confer a specific desirable attribute. Exemplary is the fabric constructed from blended yarn containing high tensile nylon staple and polyester staple, the fabric being particularly useful for the manufacture of socks demonstrating improved durability and moisture management.
Abstract:
The invention provides a method for separating one or more triorganophosphite components from a crude phosphite mixture containing acidic hydrolysis products, the method comprising: contacting said crude phosphite mixture with a basic additive to produce a second mixture comprising a first phase and a second phase, wherein said first phase comprises the basic additive and one or more components independently selected from the group consisting of (R 2 O)(R 3 O)POH, (R 1 O)(HO)PO(H) and H 3 PO 3 , wherein R 1 , R 2 and R 3 are independently selected from the group consisting of C 1 to C 18 alkyl, C 6 to C 18 aryl and hydroxyaryl, and C 3 to C 18 cycloalkyl and hydroxyalkyl radicals, and wherein R 2 and R 3 can optionally be connected to each other directly by a chemical bond or through an intermediate divalent group R 9 ; and said second phase comprises one or more triorganophosphite components independently selected from the group consisting of (R 4 O)(R 5 O)P(OR 6 ) and ((R 7 O)(R 8 O)PO) n A, wherein R 4 , R 5 , R 6 , R 7 and R 8 are independently selected from the group consisting of C 1 to C 18 alkyl, C 6 to C 18 aryl and C 3 to C 18 cycloalkyl radicals, wherein each of R 4 , R 5 and R 6 can optionally be connected to one or both of the other two directly by a chemical bond or through an intermediate divalent group R 10 , wherein R 7 and R 8 can optionally be connected to each other directly by a chemical bond or through an intermediate divalent group R 11 , wherein A is an optionally substituted or unsubstituted aliphatic, aromatic or heteroaromatic radical, and wherein n is an integer greater than 1; and R 9 , R 10, and R 11 are independently selected from the group consisting of - O-, -S-, and -CH(R 12 )-, wherein R 12 is selected from the group consisting of H, C 6 to C 18 aryl, and C 1 to C 18 alkyl.
Abstract:
A process for making 3-aminopentanenitrile from a crude 2-pentenenitrile ("crude 2PN") comprising 2-pentenenitrile, 2-methyl-2-butenenitrile, and 2-methyl-3-butenenitrile includes contacting the crude 2PN with an ammonia-containing fluid and water. The ammonia-containing fluid can include at least one reactant selected from the group consisting of ammonia, aqueous ammonia, and ammonium hydroxide.
Abstract:
The present invention relates to a compact creel using the OETO method that accommodates an increased number of packages in a relatively small footprint while providing a straight in-line delivery path in which fiber bends and changes in direction are minimized. In addition, the present invention is a system, apparatus and method for tension control in a fiber feeding system that provides a fast and reliable method for feeding high tack elastomeric thread or fiber from a package to a manufacturing process. Furthermore, the present invention provides a method and apparatus for changing packages on a creel without interrupting the manufacturing process. In particular, the compact creel of the present invention provides for continuous operation of unwinding and fiber delivery by allowing a standby package to be loaded on the same mandrel as an active package that is presently being unwound.
Abstract:
The invention provides a polyester bicomponent staple fiber comprising poly(trimethylene terephthalate) and at least one polymer selected from the group consisting of poly(ethylene terephthalate), poly(trimethylene terephthalate), and poly(tetramethylene terephthalate) or a combination of such members, said bicomponent staple fiber having: a) a scalloped oval cross-section shape having an aspect ratio a:b of about 2:1 to about 5:1 wherein 'a' is a fiber cross-section major axis length and 'b' is a fiber cross- section minor axis length; b) a polymer interface substantially perpendicular to the major axis; c) a cross-section configuration selected from the group consisting of side-by- side and eccentric sheath-core; d) a plurality of longitudinal grooves; and e) a groove ratio of about 1.05:1 to about 1.9:1. Additionally, the invention provides a spun yarn comprising cotton and the polyester bicomponent staple fiber of the invention, as well as fabrics and garments comprising the spun yarn of the invention.