Abstract:
A liquid desalination system is disclosed. The liquid desalination system includes a feed line having an inlet to receive liquid and an outlet to discharge the liquid. The liquid desalination system includes a magnet coupled to the feed line, the magnet to generate an oscillating magnetic field within the feed line and in opposition to the feed water flow. The removal of targeted ions can be achieved by manipulating the frequency and rate of the generated electromagnetic waves. The generated electromagnetic waves can be tuned to weaken the hydration bonds of that specific ion and facilitate its removal. The liquid desalination system generates an electric field across the feed line to enable the liquid to flow through the electric field. The electric field may attract sodium ions to a positive electrode and may attract chloride ions to a negative electrode, to desalinate the liquid in the feed line.
Abstract:
A fiber-optic salinity and temperature measurement includes a first Fabry-Perot interferometer and a second Fabry-Perot interferometer. Each of the Fabry-Perot interferometers includes a first optical fiber fusion spliced to a second optical fiber such that a relatively large cavity is formed between the fibers. The relatively large cavity forms the measurement chamber for each Fabry-Perot interferometer. The input port on each of the Fabry-Perot interferometers is coupled to an optical splitter such that a single optical signal input is provided to each Fabry-Perot interferometer. The output port on each of the Fabry-Perot interferometers is coupled to an optical combiner that combines the interference signal received from each of the Fabry-Perot interferometers. An optical signal analyzer coupled to an output port of the optical combiner determines the salinity and temperature of a sample material in the large cavity of the second Fabry-Perot interferometer.
Abstract:
The present invention relates to a method for the extraction of mercury from a mercury-containing hydrocarbon feed, and to the use of a hydrophilic deep eutectic solvent for the extraction of a mercury source from a hydrocarbon feed.
Abstract:
A method for the production of a metal polymer composite is disclosed. The method comprises adding a polymer and a metal to an extruder, wherein the extruder is heated to an extrusion temperature greater than the melting point of the polymer and the melting point of the metal; mixing the metal and the polymer in the extruder for a predefined residence time; and co-extruding the composite from the extruder.
Abstract:
Apparatuses and methods for preparing carbon nanostructure sheets are provided. The apparatuses may include a casting body including a substrate configured to move along a first direction, a slurry reservoir configured to contain a slurry, a dispenser connected to the slurry reservoir and configured to dispense the slurry onto a surface of the substrate and a doctoring member that extends in a second direction traversing the first direction and that is positioned above the surface of the substrate. The slurry may include carbon nanostructures, and/or one or more functional materials. The doctoring member may be spaced apart from the surface of the substrate by a predetermined distance.
Abstract:
Sono-chemical reactors and methods of using the same are provided. The sono-chemical reactors may include a plurality of sections that are sequentially connected along a longitudinal direction of the sono-chemical reactor. The plurality of sections may include a sono-reactor section that includes a reactant inlet through which reactants are supplied into the sono-reactor section and a static mixer section that is configured to receive a first reactant/product mixture from the sono-reactor section and is configured mix the first reactant/product mixture therein for reaction between unreacted reactants. An inner space of the sono-reactor section may taper along the longitudinal direction of the sono-chemical reactor away from the reactant inlet. The plurality of sections may also include a product separation section that is configured to receive a second reactant/product mixture from the static mixer section and is configured to separate a product from the second reactant/product mixture.
Abstract:
Described herein are coated chloride salt particles, including NaCl/TiO 2 and NaCl/SiO 2 core/shell particles, along with methods of making and using the same.
Abstract translation:本文描述了包衣氯化物盐颗粒,包括NaCl / TiO 2和NaCl / SiO 2核/壳颗粒,以及制备方法 并使用相同的。 p>
Abstract:
Methods of preparing metal-sulfide particles, such as for use in lithium-ion capacitors may include preparing a precursor solution. The precursor solution may include a copper-containing precursor and a metal-containing precursor. The methods may include mixing the precursor solution with water to form an aqueous precursor solution. The methods may include adding a sulfur-containing precursor to the aqueous precursor solution to form a sulfur-containing aqueous precursor solution. The methods may include heating the sulfur-containing aqueous precursor solution. The methods may include recovering a precipitate from the sulfur-containing aqueous precursor solution. The precipitate may be or include metal-sulfide particles.
Abstract:
Vortex Tubes and related methods of separating an airflow into a hot airflow and a cold airflow employ a secondary airflow inlet. A Vortex Tube includes a secondary airflow inlet that injects a swirling airflow aligned with a central region of the lumen of a circulating tube. The secondary airflow inlet includes a swirl generator that generates the vorticity of the swirling airflow. The injected swirling airflow increase the inner vortex strength thereby increasing the temperature difference between the hot airflow and the cold airflow.
Abstract:
Embodiments provide an integrated thermoacoustic freeze desalination system (100,106) and process including a thermoacoustic engine (102), wherein the thermoacoustic engine (102) is configured to generate mechanical energy in the form of acoustic waves (112) using heat supplied from a heat source (108); a thermoacoustic refrigerator (104) acoustically coupled to the thermoacoustic engine (102), wherein the thermoacoustic refrigerator (104) is adapted to use the mechanical energy in the acoustic waves (112) produced by the thermoacoustic engine (102) to remove heat from a coolant flowing through said thermoacoustic refrigerator (104); and a freeze desalination system (100, 106) fluidly coupled to the thermoacoustic refrigerator (104) and the thermoacoustic engine (102), wherein the freeze desalination system (100, 106) is configured to desalinate brine (120) via a process in which the coolant from the thermoacoustic refrigerator (104) flows through the freeze-desalination system (100,106) and causes at least a portion of the water from the brine (120) to freeze and separate from the brine.