Abstract:
A hemostatic putty for treatment of a variety of wounds topographies, including but not limited to highly three dimensional wounds, for example gunshot wounds and impalements, is disclosed. The putty is comprised of a matrix polymer weakly crosslinked or not crosslinked such that a viscoelastic matrix is formed. The viscoelastic nature of the putty is tunable by the composition and enables the putty to conform to a variety of wound topographies. Likewise, a hemostatic polymer, for example chitosan or hydrophobically modified chitosan, is included in this matrix to impart hemostatic properties and tissue adhesive on the putty. The hemostatic polymers disclosed prevent microbial infection and are suitable for oxygen transfer required during normal wound metabolism.
Abstract:
The present invention is directed to a hybrid high voltage aqueous electrolyte battery that combines Ni/Mg2NiH4 and Mg-ion rechargeable battery chemistries. The hybrid aqueous electrolyte battery can be used for plug-in hybrid electrical vehicles and electric vehicles.
Abstract:
A method and devices are described, in which a transformable fiber at a first crystal structure is shaped from its pre-determined configuration into a new shaped configuration. The new shaped configuration of the transformable fiber is inserted into a cavity of a heat and fire protective item. The new shaped configuration of the transformable fiber is heated to above its transformation temperature to a second crystal structure. The heating transforms the new shaped configuration to its pre-determined configuration, wherein the pre-determined configuration forms an air pocket within the heat and fire protective item. The transformable fiber is cooled below its transformation temperature to revert the transformable fiber back to the new shaped configuration at the first crystal structure.
Abstract:
A hemostatic putty for treatment of a variety of wounds topographies, including but not limited to highly three dimensional wounds, for example gunshot wounds and impalements, is disclosed. The putty is comprised of a matrix polymer weakly crosslinked or not crosslinked such that a viscoelastic matrix is formed. The viscoelastic nature of the putty is tunable by the composition and enables the putty to conform to a variety of wound topographies. Likewise, a hemostatic polymer, for example chitosan or hydrophobically modified chitosan, is included in this matrix to impart hemostatic properties and tissue adhesive on the putty. The hemostatic polymers disclosed prevent microbial infection and are suitable for oxygen transfer required during normal wound metabolism.
Abstract:
The present invention relates to cell wall degradative systems, in particular to systems containing enzymes that bind to and/or depolymerize cellulose. These systems have a number of applications. Some embodiments relate to a method of producing ethanol using the cell wall degradative systems of the present invention.
Abstract:
A hemostatic putty for treatment of a variety of wounds topographies, including but not limited to highly three dimensional wounds, for example gunshot wounds and impalements, is disclosed. The putty is comprised of a matrix polymer weakly crosslinked or not crosslinked such that a viscoelastic matrix is formed. The viscoelastic nature of the putty is tunable by the composition and enables the putty to conform to a variety of wound topographies. Likewise, a hemostatic polymer, for example chitosan or hydrophobically modified chitosan, is included in this matrix to impart hemostatic properties and tissue adhesive on the putty. The hemostatic polymers disclosed prevent microbial infection and are suitable for oxygen transfer required during normal wound metabolism.
Abstract:
A method and system are presented for the combustion of hydrogen sulfide mixed with other gases for simultaneous recovery of sulfur and energy from hydrogen sulfide at higher efficiency. The amounts and velocity of the hydrogen sulfide into the reactor is selected in such a way that it is not possible to burn the hydrogen sulfide in a normal thin reaction zone during its combustion that normally prevails in almost all flame combustion devices. The injected hydrogen sulfide gas is mixed in a thermal reactor with fresh air and hot active combustion gases in the reactor on account of internal jet pump effect and self-induced entrainment. The reaction is exothermic so that the chemical energy present in hydrogen sulfide is recovered together with the sulfur that is tapped off from he process. The reactor process can also be used for other gas and chemicals that require controlled reactor thermo-chemical environment. Various reactors are shown capable of controlling the formation of a thermal distribution flow pattern based on the position and position and direction (and other factors) regarding fluid introduction within a combustion chamber of the reactors.
Abstract:
A new rapid optical specific absorption rate (SAR) system is disclosed. The rapid optical SAR system has ability to measure and map the power deposited in a flat phantom or other phantom filled with a transparent simulant fluid. Absolute rates of temperature increase in the phantom by photo thermal techniques are measured. For example, the temperature increase and gradients in the phantom bend the path of a laser beam, which may be aimed at a position sensitive detector. The spatial SAR may be mapped and SAR differences between different telephones and telephone orientations, for example, can be distinguished. The system is non-invasive and non-perturbing of the SAR distribution in the phantom, can measure at locations up to the interior surface of the phantom, and provides thermally-based SAR measurements that do not necessarily require constant calibration.