Abstract:
A heartbeat monitoring device (2) comprises: - a number of electrodes (3.1, 3.2) for sensing an ECG signal (SO) of a user (5), - a signal processing means (14) for processing a signal (S2) derived from the ECG signal and adapted to extract information related to the heartbeat of the user from the derived signal, - a standardized wireless communication module (11) for transmitting said heartbeat-related information to an external device (17). In the proposed heartbeat monitoring device the signal-processing means is implemented on a communications processor of the standardized wireless communication module.
Abstract:
The present invention relates to a magnetic induction tomography system and method for studying the electromagnetic properties of an object. In order to provide a high resolution MIT technique without the need of increasing the number of coils, a magnetic induction tomography system (1) for studying the electromagnetic properties of an object (2) is suggested, the system comprising one or more generator coils (4) adapted for generating a primary magnetic field, said primary magnetic field inducing an eddy current in the object (2), one or more sensor coils (5) adapted for sensing a secondary magnetic field, said secondary magnetic field being generated as a result of said eddy current, and means (6, 7, 8, 9) for providing a relative movement between one or more generator coils (4) and/or one or more sensor coils (5) on the one hand and the object (2) to be studied on the other hand.
Abstract:
The present invention relates to a magnetic induction tomography system and method for studying the electromagnetic properties of an object. In order to provide a high resolution MIT technique without the need of increasing the number of coils, a magnetic induction tomography system (1) for studying the electromagnetic properties of an object (2) is suggested, the system comprising one or more generator coils (4) adapted for generating a primary magnetic field, said primary magnetic field inducing an eddy current in the object (2), one or more sensor coils (5) adapted for sensing a secondary magnetic field, said secondary magnetic field being generated as a result of said eddy current, and means (6, 7, 8, 9) for providing a relative movement between one or more generator coils (4) and/or one or more sensor coils (5) on the one hand and the object (2) to be studied on the other hand.
Abstract:
The invention related to a modulator for a communications system. The modulator comprises a spread spectrum coder, a pulse code modulator having a signal input port connectable to a signal output port of the spread spectrum coder. The modulator performs a robust and error free modulation and coding scheme by using a modified spread spectrum scheme combined with pulse code modulation. The communication system contains a low data rate, noise robust modulation and coding scheme using a very simple transmitter. This results in a very straightforward transmitter circuit, reducing size and costs of the transmitter.
Abstract:
In order to provide a simple and reliable method and apparatus for determining the position and/or the motion of a user's body during inductively measuring the bio-impedance of that body an apparatus (1) is suggested, which apparatus (1) comprises generating means (3) adapted to induce an alternating magnetic field in the user' s body (2), the apparatus further comprising a number of reference signal generators (4) attached to the user's body (2), each reference signal generator (4) being adapted to generate a reference signal, the apparatus further comprising sensing means (6) adapted to measure a secondary magnetic field to obtain bio-impedance values and further adapted to measure a number of reference signals, and the apparatus further comprising analyzing means (8) adapted to determine the position and/or the motion of the user's body (2) based on the measured reference signals.
Abstract:
The present invention relates to a method and apparatus (1) for inductively measuring the bio-impedance of a user' s body. Furthermore the invention relates to a bed (2) comprising said apparatus (1). In order to provide a method and apparatus for spatially resolved inductively measuring the bio-impedance of a user' s body without a complex circuitry, an apparatus (1) is suggested for inductively measuring the bio-impedance of a user's body, whereas the apparatus (1) comprises a number of first inductors (4), said first inductors (4) being adapted to induce an alternating magnetic field in the user's body and the apparatus (1) further comprises a number of second inductors (6), said second inductors (6) being adapted to measure a secondary magnetic field in the user's body, characterized in that each of the number of first inductors (4) overlaps at least one of the number of second inductors (6) to form a number of measuring areas (12, 25).
Abstract:
An electrophysiological device comprises a lead-off detector in the form of an electrical impedance detector and further a path from a supply voltage to a second voltage. The path comprises segments having electrical impedances, at least one of which is to be ascertained, and a measuring vertex. The electrical impedance detector further comprises a discriminator connected to the measuring vertex and arranged to evaluate an electrical measuring signal observed at the measuring vertex.
Abstract:
An electrophysiological device comprises a lead-off detector in the form of an electrical impedance detector and further a path from a supply voltage to a second voltage. The path comprises segments having electrical impedances, at least one of which is to be ascertained, and a measuring vertex. The electrical impedance detector further comprises a discriminator connected to the measuring vertex and arranged to evaluate an electrical measuring signal observed at the measuring vertex.
Abstract:
There is provided an apparatus for use in diagnosing the presence of obstructive sleep apnea in a patient, the apparatus comprising a processor configured to receive signals representing measurements of a patient's breathing obtained during a plurality o breathing cycles by the patient while the patient is awake, convert the signals into the frequency domain and to determine a value for at least one parameter based on an analysis of the frequency-domain converted signals in one or more frequency bands covering frequencies below 100 Hz.
Abstract:
The invention relates to a method for generating nitric oxide, in particular for therapeutic applications, which comprises the steps of: guiding a process gas into a reaction chamber 3, wherein the process gas comprises nitrogen and oxygen, heating the process gas to a temperature which is sufficiently high to enable a reaction of oxygen and nitrogen to form nitric oxide, thereby forming a gas which comprises nitric oxide, and extracting the nitric oxide comprising gas from the reaction chamber 3, wherein oxygen is present in the process gas in the reaction chamber in an amount of