Abstract:
A wideband mixer circuit that is flexible and reconfigurable so that several identical wideband mixer circuits may be used in lieu of several fixed narrow-band mixers. Such wideband mixer circuits can be provided in multiples within a chip such that multiple inputs are each within a wide frequency range (i.e., 3 GHz) and may be actively narrowed to any desired frequency range by way of the operation inherent to the circuit architecture. Such a chip supports multiple standards at each input.
Abstract:
A CMOS transconductor for cancelling third-order intermodulation is provided. The transconductor includes a transconductance circuit and a tuneable distortion circuit. The transconductance circuit takes an input voltage and generates an output current having a transconductance element and an IM3 element. The distortion circuit takes the same input voltage and generates a current having an IM3 element of equal amplitude and opposite phase to the IM3 element of the transconductance circuit. A controller circuit tunes the distortion circuit to adjust its IM3 element to substantially equal the amplitude of the IM3 of the transconductance circuit. The distortion and transconductance circuits are arranged to sum their output currents thereby effectively cancelling the IM3 elements, leaving the transconductance relatively unmodified.
Abstract:
The present invention relates generally to communications, and more specifically to a method and apparatus of modulating baseband and RF (radio frequency) signals. A modulator topology is disclosed in which an input signal x(t) is up-converted to an output signal y(t), either by mixing it with two mixing signals φ1 and φ2 ('pseudo-direct conversion' mode), or by mixing it with only one mixing signal φ2 ('direct-conversion' mode). In pseudo-direct modulation mode, the φ1 and φ2 mixing signals emulate a local oscillator signal; the product φ1* φ2 has significant power at the frequency of a local oscillator signal being emulated, but neither φ1 nor φ2 have significant power at the frequency of the input signal x(t), the LO signal being emulated, or the output signal φ1 φ2 x(t).
Abstract:
The invention provides a system and method of generating a number of inputs to the mixer elements in a direct conversion (homodyne) receiver configuration using Virtual Local Oscillator (VLO) techniques. These generated inputs meet the requirement that they must have a fixed and stable phase-relationship, as well as being correctly related in terms of their power spectra relative to the operating radio (RF), intermediate (IF), and baseband frequencies of the system, and that when applied to the mixer elements they permit the mixer elements to create internally the effect of applying the Local Oscillator signal at a suitable frequency.
Abstract:
The invention is implemented in the form of modifications to a Gilbert mixer circuit. The modifications alleviate disadvantages and problems Introduced because of low voltage power supply typically found in low-power devices such as portable cellular phones. In addition to improving the linearity performance, the new design also provides good matching between I and Q signals, and decreases the switching noise in the active mixer by reducing the switching current. The invention can be applied to both single stage and dual mixers to give low noise performance and Automatic Gain Control (AGC).
Abstract:
The invention is implemented in the form of modifications to a Gilbert mixer circuit. The modifications alleviate disadvantages and problems Introduced because of low voltage power supply typically found in low-power devices such as portable cellular phones. In addition to improving the linearity performance, the new design also provides good matching between I and Q signals, and decreases the switching noise in the active mixer by reducing the switching current. The invention can be applied to both single stage and dual mixers to give low noise performance and Automatic Gain Control (AGC).
Abstract:
This patent describes a method and system which overcomes the LO-leakage problem during modulation and demodulation, common to direct conversion and similar RF transmitters and receivers. This problem is solved using a virtual local oscillator (VLOTM) signal which emulates mixing with a local oscillators (LO) signal. The VLO signal is constructed using complementary mixing signals that suppress mixing power in the bandwidth of the input signal, and within the bandwidth of the output frequency. Specifically, mixing is done in two or more stages, using time-varying mixing signals ζ¿1? and ζ2 which satisfy the following criteria: ζ1 * ζ2 having significant power at the frequency of the LO being emulated, one of ζ1 and ζ2 having minimal p ower around the frequency of the output signal y(t), and the other of ζ1 and ζ2 having minimal power around the centre frequency, fRF, of the input signal x(t).
Abstract:
A wireless system having high spectral purity output signals. The wireless system has a transmitter circuit for transmitting an output signal and a power amplifier for amplifying the output signal for wireless transmission via an antenna. Positioned in-line with the output signal between the transmitter circuit and the power amplifier is a harmonic trap configured for inhibiting harmonics within a predetermined frequency range generated by the power amplifier from leaking into the transmitter circuit. The harmonic trap can be implemented as a discrete device, or integrated within the transmitter circuit or integrated within the power amplifier. By inhibiting the harmonics from leaking into the transmitter circuit, degraded performance of the transmitter circuit is prevented.
Abstract:
A CMOS automatic gain control (AGC) circuit that receives an analog control voltage and generates a temperature compensated gain voltage to linearly control the gain of a variable gain circuit operating in the sub-threshold region. A PTAT circuit having a resistor network coupled to a current mirror circuit operating in the sub-threshold region establishes a current having an proportional relationship to temperature. This current is used as a supply for a voltage to voltage converter circuit which generates an intermediate voltage in response to the analog control voltage. A linearizing circuit operating in the sub-threshold region pre-conditions the intermediate voltage, which is then applied to a variable gain circuit. The variable gain circuit is operated in the sub-threshold region, and the preconditioned intermediate voltage will control the amount of gain to be substantially linear with respect to the analog control voltage, and with a range of about 85dB.