Abstract:
Arrangements disclosed here provide an LTE E-RAN employing a hierarchical architecture with a central controller controlling multiple LTE radio nodes (RNs). The RNs may be clustered within the small cell network. A fractional frequency reuse ("FFR") scheme is provided that dynamically computes the FFR allocations at individual RNs and configures the corresponding schedulers within each RN to improve cell-edge users' experience. Once an FFR pattern has been generated and frequencies allocated, UE throughput can be emulated to predict the resulting bit rates for each UE. Using the prediction, a scheduler emulation may be run to predict the behavior of the system. The results of each cell may then be collected to generate the performance of the entire system, which may in turn be used to generate a new or modified FFR pattern, or new or modified clustering. Optimization of the performance results in an optimized FFR pattern.
Abstract:
A system and method for establishing a multimedia session between a wireless user terminal and a network device. Embodiments include systems and methods for receiving a request from a wireless terminal initiating a call event to the network device; generating and sending a multimedia session invitation to a multimedia call control entity requesting a multimedia session with the network device; receiving a multimedia status message from the multimedia call control entity indicating the progress of initiating the multimedia session; and triggering setup of a radio access bearer to handle the multimedia session in response to the multimedia status message.
Abstract:
Methods, devices, and computer program products facilitate various handoff operations to/from a network. A self-configuring and self-optimizing topology discovery operation provides detailed information regarding the various radio nodes that are internal and external to the network. This information is utilized to construct a plurality of neighbor lists that identify multiple tiers of neighboring radio nodes of the network. The neighbor lists and the measurements obtained from the user equipment within the network provide up-to-date information that facilitates various types of handoff operations.
Abstract:
Methods, devices and computer program products facilitate self-configuration and self-optimization of radio networks. An internal topology discovery is performed to assess characteristics of a plurality of access points within an internal network. An external cell discovery can also be performed to identify one or more access points operating within an external network. Based on the assessments obtained through the internal and/or external toplogy dicovery processes, operational parameters are assinged to each access point within the internal network. Such operational parameters can include a transmit power associated with each radio node.
Abstract:
Methods, apparatus and computer program products for providing an autonomously organizing network enable a cellular network to maintain stable operation despite unpredictable addition or removal of network devices. In addition, a network operator can create a scalable deployment that provides for operational efficiency and reduced cost burden of new equipment by enabling many existing processes to remain relevant. A method for providing such a network provides for collecting radio data from a first peer device, collecting topological data from the first peer device or a second peer device, creating a message from the topological and the radio data, and sending the message to a network device.
Abstract:
In a cellular communication network having a plurality of access points serving wireless terminals, methods and apparatus for facilitating handoff of a wireless terminal from a first access point to a second access point. In various embodiments, the process includes storing in a memory device at the wireless terminal a cell identifier, wherein the cell identifier includes a special character enabling the cell identifier to identify a plurality of access points to which the wireless terminal can be handed off; and the wireless terminal using the stored address information to determine access points to which a handoff may be implemented. One or more cell identifiers stored in the memory can be used as a neighbor list, which can be used to identify handoff possibilities or topographical adjacencies.
Abstract:
Arrangements disclosed here provide an LTE E-RAN employing a hierarchical architecture with a central controller controlling multiple LTE radio nodes (RNs). The RNs may be clustered within the small cell network. A fractional frequency reuse (“FFR”) scheme is provided that dynamically computes the FFR allocations at individual RNs and configures the corresponding schedulers within each RN to improve cell-edge users' experience. Once an FFR pattern has been generated and frequencies allocated, UE throughput can be emulated to predict the resulting bit rates for each UE. Using the prediction, a scheduler emulation may be run to predict the behavior of the system. The results of each cell may then be collected to generate the performance of the entire system, which may in turn be used to generate a new or modified FFR pattern, or new or modified clustering. Optimization of the performance results in an optimized FFR pattern.
Abstract:
A method for upgrading an access controller that controls and coordinates a plurality of radio nodes (RNs) each associated with a cell in a cluster of cells belonging to a radio access network includes initializing a new access controller. The new access controller is to replace a current access controller currently controlling and coordinating the plurality of RNs cell in the cluster. A most lightly loaded one of the plurality of RNs is identified. All UEs currently attached to the identified RN is caused to be handed off to a neighboring cell in the cluster. After all the UEs have been handed-off from the identified RN, the identified RN is rebooted so that it is being controlled and coordinated by the new access controller. The steps of causing the UEs to be handed-off and rebooting the identified RN are repeated for a second one of the plurality of RNs.
Abstract:
In particular, systems and methods according to present principles configure physical eNodeB to have multiple virtual eNodeBs, where each virtual eNodeBs corresponds to a particular PLMN. Thus, each PLMN has its own virtual eNodeB which is hosted on a common shared physical eNodeB.
Abstract:
Systems and methods are disclosed for managing an aggregated self-organizing network (A-SON). In such, a plurality of small cells is grouped into clusters using available topology information. In one implementation, a subset of clusters is assigned to groups of a first type, such that the clusters within a group of the first type have minimal RF connectivity. For example, scanning or updating of RF parameters may then be coordinated such that adjacent clusters do not scan or update simultaneously but clusters within groups of the first type do have at least partially overlapping scans or updates. Similarly, subsets of clusters may be assigned to first and second groups of a second type, such that the clusters within a first group of the second type have sufficient coverage to provide RF connectivity to clusters within the second group, if the second group encounters a service interruption. Other benefits are also described.