Abstract:
A solution for fabricating a structure including a light guiding structure is provided. The light guiding structure can be formed of a fluoropolymer-based material and include one or more regions, each of which is filled with a fluid transparent to radiation having a target wavelength, such as ultraviolet radiation. The region(s) can be created using a filler material, which is at least substantially enclosed by the fluoropolymer-based material and subsequently removed from each region. The structure can further include at least one optical element integrated into the light guiding structure.
Abstract:
A structured substrate configured for epitaxial growth of a semiconductor layer thereon is provided. Structures can be formed on a side of the structured substrate opposite that of the growth surface for the semiconductor layer. The structures can include cavities and/or pillars, which can be patterned, randomly distributed, and/or the like. The structures can be configured to modify one or more properties of the substrate material such that growth of a higher quality semiconductor layer can be obtained.
Abstract:
A solution for generating ultraviolet diffusive radiation is provided. A diffusive ultraviolet radiation illuminator includes at least one ultraviolet radiation source located within a reflective cavity that includes a plurality of surfaces. At least one of the plurality of surfaces can be configured to diffusively reflect at least 70% of the ultraviolet radiation and at least one of the plurality of surfaces can be configured to transmit at least 30% of the ultraviolet radiation and reflect at least 10% of the ultraviolet radiation.
Abstract:
A solution for disinfecting flowable products, such as liquids, suspensions, creams, colloids, emulsions, powders, and/or the like, as well as accessories and products relating thereto, such as containers, caps, brushes, applicators, and/or the like, using ultraviolet radiation is provided. In an embodiment, an ultraviolet impermeable cap is configured to enclose a volume corresponding to a flowable product. At least one ultraviolet radiation source can be mounted on the cap and be configured to generate ultraviolet radiation for disinfecting the enclosed area. The ultraviolet radiation source can be configured to only generate ultraviolet radiation when the volume is enclosed by the ultraviolet impermeable cap.
Abstract:
A light emitting heterostructure including a partially relaxed semiconductor layer is provided. The partially relaxed semiconductor layer can be included as a sublayer of a contact semiconductor layer of the light emitting heterostructure. A dislocation blocking structure also can be included adjacent to the partially relaxed semiconductor layer.
Abstract:
A solution for packaging a two terminal device, such as a light emitting diode, is provided. In one embodiment, a method of packaging a two terminal device includes: patterning a metal sheet to include a plurality of openings; bonding at least one two terminal device to the metal sheet, wherein a first opening corresponds to a distance between a first contact and a second contact of the at least one two terminal device; and cutting the metal sheet around each of the least one two terminal device, wherein the metal sheet forms a first electrode to the first contact and a second electrode to the second contact.
Abstract:
Ultraviolet radiation is directed within an area. Items located within the area and/or one or more conditions of the area are monitored over a period of time. Based on the monitoring, ultraviolet radiation sources are controlled by adjusting a direction, an intensity, a pattern, and/or a spectral power of the ultraviolet radiation generated by the ultraviolet radiation source. Adjustments to the ultraviolet radiation source(s) can correspond to one of a plurality of selectable operating configurations including a storage life preservation operating configuration, a disinfection operating configuration, and an ethylene decomposition operating configuration, each of which can include a corresponding target wavelength rang and/or target intensity range.
Abstract:
Ultraviolet radiation is directed within an area. The target wavelength ranges and/or target intensity ranges of the ultraviolet radiation sources can correspond to at least one of a plurality of selectable operating configurations including a virus destruction operating configuration and a bacteria disinfection operating configuration. Each configuration can include a unique combination of the target wavelength range and target intensity range.
Abstract:
Ultraviolet radiation is directed within an area. The storage area is scanned and monitored for the presence of biological activity within designated zones. Once biological activity is identified, ultraviolet radiation is directed to sterilize and disinfect designated zones within the storage area.
Abstract:
A perforating ohmic contact to a semiconductor layer in a semiconductor structure is provided. The perforating ohmic contact can include a set of perforating elements, which can include a set of metal protrusions laterally penetrating the semiconductor layer(s). The perforating elements can be separated from one another by a characteristic length scale selected based on a sheet resistance of the semiconductor layer and a contact resistance per unit length of a metal of the perforating ohmic contact contacting the semiconductor layer. The structure can be annealed using a set of conditions configured to ensure formation of the set of metal protrusions.