Abstract:
A cutting insert is provided with an upper surface, a lower surface, side surfaces for interconnecting the upper surface and the lower surface, cutting edges located at the intersections between the upper surface and the side surfaces, and grooves located in the side surfaces, extending from the upper surface toward the lower surface, and dividing the cutting edges. Each of the grooves is provided with a first edge and a second edge which are located at the edges of the groove in the width direction thereof and extending from the upper surface toward the lower surface. In a side view, the first edge has a first separated section located on the upper surface side and, as the first edge extends toward the lower surface, separated away from a reference line which passes through the midpoint of the groove in the width direction thereof and is substantially perpendicular to the lower surface. Also, in the side view, the second edge has a second separated section located on the upper surface side and separated away from the reference line as the second edge extends toward the lower surface.
Abstract:
An object of the invention is to provide a cutting insert suitably usable even in a cutting. A cutting insert of the invention is formed in a substantially plate shape, wherein a groove part (6) is formed in a flank face (4), a main cutting edge (5) is composed of a plurality of main cutting edge divisions (5a) divided by the groove part (6), and a concave part (7) depressed in a rake face (2) is formed in a vicinity corresponding to each of the main cutting edge divisions (5) in the rake face (2).
Abstract:
A throwaway insert enabling the use of a holder for a long period and having excellent chip evacuation is provided. The throwaway insert is formed in a substantially polygonal plate shape and includes a rake face formed on an upper surface thereof a relief face formed on a side surface thereof a main cutting edge formed along a ridge representing an intersection of the rake face and the relief face, which is divided into a plurality of main cutting edge divisions by at least one groove formed on the relief face, and a projection formed so as to protrude from the rake face in correspondence with each of the main cutting edge divisions.
Abstract:
A data transfer control device includes an OUT-transfer transmitter circuit which transmits OUT data by driving a serial signal line, a clock-transfer transmitter circuit which transmits a clock signal CLK by driving a serial signal line, a PLL circuit which generates the clock signal CLK, and a power-down setting circuit which sets a power-down mode. In a first power-down mode, the OUT-transfer transmitter circuit is set to the power-down mode, and the clock-transfer transmitter circuit is set to the power-down mode to stop a system clock signal of a target-side data transfer control device. In a second power-down mode, the OUT-transfer transmitter circuit is set to the power-down mode without setting the clock-transfer transmitter circuit to the power-down mode.
Abstract:
An integrated circuit device includes a common transceiver macrocell including a circuit necessary for host operation and a circuit necessary for device operation. The common transceiver macrocell includes an analog front-end circuit and a high-speed logic circuit. The high-speed logic circuit includes a parallel/serial conversion circuit, a first parallel interface which serves as an interface between an external circuit and the parallel/serial conversion circuit, a sampling clock generation circuit, a serial/parallel conversion circuit, and a second parallel interface which serves as an interface between the serial/parallel conversion circuit and the external circuit.
Abstract:
A throw-away tip of which two principal surfaces each has a land surface provided along the periphery thereof, a central surface provided on the inside of the land surface, a recess (a chip breaker groove) interposed therebetween, and at least one protrusion that extends from the central surface toward the land surface, wherein height of the land surface is made equal to the height of at least the top surface of the protrusion so that at least the top surface of the protrusion of the central surface and the land surface both serve as contact surface is provided.
Abstract:
A positive power voltage is supplied to a power line. When a high signal is applied to an input terminal, a transistor, which is a switching element, becomes the ON state, and a current flow only to a light-emitting diode, and thus only the light-emitting diode is lighted. When a low signal is applied to the input terminal, the transistor becomes the OFF state, and current flows to the light-emitting diodes. Since the values of the resistors are determined so that the current flowing to the light-emitting diode becomes sufficiently low, only the light-emitting diode is lighted. The light-emitting-diodes are serially connected in order not to receive an affect of the characteristics of the transistor.
Abstract:
An objective of the present invention is to provide a data transfer control device and electronic equipment which make it possible to reduce processing overheads in the firmware and implement high-speed data transfer. In a data transfer control device in accordance with the IEEE 1394 standard, the header of a packet is written to a header area, the ORB (data for SBP-2) of the packet is written to an ORB area, and the stream (data for the application layer) of the packet is written to a stream area. The stream area is managed by hardware in accordance with full and empty signals. Indication information is comprised within a transaction label tl of a request packet, and the header, ORB, and stream of a response packet are written to areas indicated by the indication information comprised within tl, when the response packet is received. The device is also provided with registers TSR and TER that contain addresses TS and TE for securing a transmission area in the stream area and registers RSR and RER that contain addresses RS and RE for securing a reception area therein.
Abstract:
An objective of the present invention is to provide a data transfer control device and electronic equipment which make it possible to reduce processing overheads in the firmware and implement high-speed data transfer. In a data transfer control device in accordance with the IEEE 1394 standard, the header of a packet is written to a header area, the ORB (data for SBP-2) of the packet is written to an ORB area, and the stream (data for the application layer) of the packet is written to a stream area. The stream area is managed by hardware in accordance with full and empty signals. Indication information is comprised within a transaction label t1 of a request packet, and the header, ORB, and stream of a response packet are written to areas indicated by the indication information comprised within t1, when the response packet is received. The device is also provided with registers TSR and TER that contain addresses TS and TE for securing a transmission area in the stream area and registers RSR and RER that contain addresses RS and RE for securing a reception area therein.
Abstract:
The objective is to provide a data transfer control device and electronic equipment that implement bit insertion, encoding, decoding, and bit deletion at a slow clock frequency. A bit stuffing circuit and NRZI encoder are provided in a stage before a parallel-serial conversion circuit on the transmission side and an NRZI decoder and a bit unstuffing circuit are provided in a stage after a serial-parallel conversion circuit on the reception side, so that bit stuffing, NRZI encoding, NRZI decoding, and bit unstuffing are implemented on parallel data, not serial data. Any bits that have overflowed due to the bit insertion are carried forward to data for the next clock cycle and any deficiency of bits caused by bit deletion is moved up from the data of the next clock cycle. Insertion (or deletion) of bits is based on the thus calculated bit stuffing (or bit unstuffing) position and the range of parallel data to be output is based on the accumulated total of the number of bits that overflow (or contract).