Abstract:
A cleaning arrangement for a coater that has a plate cylinder, the cleaning arrangement having a cleaning web, a tangential moving mechanism configured to controllably move the cleaning web in at least one direction in a plane defined by the cleaning web, a radial moving mechanism configured to controllably move the cleaning web in at least one direction out of the plane, and a controller coupled to the tangential and radial moving mechanisms which is configured to control the moving of the cleaning web into and out of contact with the plate cylinder in conformity with input signals received by the controller.
Abstract:
An apparatus for corona treatment, the apparatus including a corona treatment unit with an inlet side and an outlet side, wherein the unit includes one or more sets of transverse electrodes, at least one electrode in each set being connected to a high voltage source and at least one second electrode connected electrically to ground, wherein the second electrode connected to ground includes a rotatable roller. The apparatus is a through-flow apparatus adapted for corona treatment of material in sheets, and including at least one conveying table with a transverse direction and a longitudinal direction, where the at least one conveying table includes mechanical conveyor means. By such a solution is achieved an apparatus through which sheets of material can be conveyed and corona-treated without holding the material and pulling it through the apparatus.
Abstract:
A composite doctor blade chamber (1) for a doctor blade chamber system for rotary printing units, the doctor blade chamber (1) including a front side with an open channel (8), wherein the doctor blade chamber is made of two composite profiles, an open profile (30) with a front side and a back side and a closed profile (33) with a front side and a back side, wherein the front side (31) of the open profile is joined with the back side of the closed profile (35), whereby is achieved low weight and high strength, high corrosion resistance, a cleaning-friendly surface, less waste of ink, nice appearance and an improved working environment. In addition it is an object of the invention to provide a doctor blade chamber system with the above mentioned advantages where re placement of doctor blades can be performed faster, more easily and without use of tools.
Abstract:
A doctor beam for use in a printing unit, e.g. a flexographic printing unit, wherein the doctor beam has a front side with a U-shaped channel, wherein the doctor beam is made of metal and includes a surface coating produced by Plasma Electrolytic Oxidation (PEO), the surface coating at least covering the U-shaped channel, and wherein the doctor beam further includes a non-stick ceramic coating, whereby is achieved the possibility of using metal for making doctor beams without risking their degrading, neither due to chemical impact of the applied inks/lacquers/primers nor due to the destruction of the surface coating by cleaning liquids. The invention also concerns a method for treating the surface of a doctor beam and use of a doctor beam.
Abstract:
An apparatus for conveying a sheet-formed item from a digital printing unit, the apparatus including an inlet side and an outlet side, and including a set of conveying devices for moving items in a conveying direction and a method for regulating such an apparatus. The apparatus includes a device for aligning an article from one position to another position in relation to one or more reference points, and a device for fixing an item at a given position in relation to a stop. The method includes the steps: detecting an item; receiving and conveying the item; regulating a possible skew position of the item as the item is moved against a stop on the conveying device, where the item is acted on by one speed of the conveyor belt and moved into abutment on the conveying means at a lower speed; and fixing the item in the aligned position.
Abstract:
A method for regulating the flow of a viscosity-dependent liquid in a graphic process, including a pump (5) configured for pumping a viscosity-dependent liquid (3) from a first container (4) and to a graphic printing machine (1), and wherein the viscosity of the liquid (3) affects operation of the pump (5), a sensor (8) connected with the pump (5) and which is configured to measure at least one of the operational parameters of the pump (5), and a controller (9) connected with the sensor (8) and which is configured to analyze the data from the sensor (8). The controller (9) determines the viscosity of the liquid (3) from the measured operational parameters of the pump (5) and generates a control signal (17) from the measured viscosity, based on which the viscosity of the liquid (3) pumped through the pump (5) can be adjusted.
Abstract:
An apparatus comprises a stacker configured to stack planar workpieces into stacks, and a cutter configured to cut preforms out of planar workpieces. The cutter is located downstream of said stacker on a manufacturing line, and a conveyor exists between said stacker and cutter. The apparatus comprises a conveyor controller, which is configured to, after transferring a stack from said conveyor to a feeder section of said cutter; rewind the conveyor to place a foremost free location after existing stacks on the conveyor to a position where it is ready to receive a stack from said stacker.
Abstract:
A composite doctor blade chamber (1) for a doctor blade chamber system for rotary printing units, the doctor blade chamber (1) including a front side with an open channel (8), wherein the doctor blade chamber is made of two composite profiles, an open profile (30) with a front side and a back side and a closed profile (33) with a front side and a back side, wherein the front side (31) of the open profile is joined with the back side of the closed profile (35), whereby is achieved low weight and high strength, high corrosion resistance, a cleaning-friendly surface, less waste of ink, nice appearance and an improved working environment. In addition it is an object of the invention to provide a doctor blade chamber system with the above mentioned advantages where re placement of doctor blades can be performed faster, more easily and without use of tools.
Abstract:
A doctor beam for use in a printing unit, e.g. a flexographic printing unit, wherein the doctor beam has a front side with a U-shaped channel, wherein the doctor beam is made of metal and includes a surface coating produced by Plasma Electrolytic Oxidation (PEO), the surface coating at least covering the U-shaped channel, and wherein the doctor beam further includes a non-stick ceramic coating, whereby is achieved the possibility of using metal for making doctor beams without risking their degrading, neither due to chemical impact of the applied inks/lacquers/primers nor due to the destruction of the surface coating by cleaning liquids. The invention also concerns a method for treating the surface of a doctor beam and use of a doctor beam.