Abstract:
A master-slave system includes a master and a slave. The master includes a first communication interface, a master controller, and a voltage meter. The voltage meter is connected to the first communication interface and the master controller. The slave includes a second communication interface, an input unit, a slave controller, and a control indicator unit. The control indicator unit is connected to the second communication interface and the slave controller. The salve controller controls voltage of a node between the control indicator unit and the second communication interface to change between a high logic level and a low logic level according to signals from the input unit. The voltage meter is connected to the control indicator unit to detect the voltage of the node. The master controller controls the master to execute a function according to change of the obtained voltage within a preset period.
Abstract:
An assay device capable of assaying purity of a substance in an object includes a memory, an emitter, a receiver, a processing unit, and a display device. The memory stores names and standard densities of a number of substances. The emitter emits rays at the object. The receiver receives the rays reflected by the object. The processing unit calculates density of the object according to intensity of the emitted rays and intensity of the reflected rays. The processing unit further calculates purity of a selected substance in the object according to the density of the object and standard density of the selected substance stored in the memory, and outputs the calculated purity to the display device.
Abstract:
A resistance-measuring circuit includes a controller for outputting a PWM signal and further for adjusting the duty cycle of the PWM signal, and a sampling circuit for processing the PWM signal and transmitting the processed PWM signal to the sensor. The sampling circuit samples the signal outputted from the sensor to generate a sampled signal with the voltage thereof changing according to any change in the duty cycle of the PWM signal, and further transmits the sampled signal to the controller. The controller obtains the real-time duty cycle of the PWM signal when the voltage of the sampled signal reaches a threshold voltage, and further calculates the exact resistance of the sensor according to the obtained real-time duty cycle of the PWM signal and the threshold voltage. An electronic device with the resistance-measuring circuit is also provided.
Abstract:
An electronic device includes a main body and an earphone. The main body includes an earphone socket and a first processing unit. The earphone includes an earphone plug, a storage unit, and a second processing unit. The earphone is connected to the main body by inserting the earphone plug into the earphone socket. The storage unit stores a password. The second processing unit transmits the password to the main body when the second processing unit detects that the earphone plug is inserted into the earphone socket. The first processing unit unlocks the main body if the password received from the earphone matches a predetermined condition.
Abstract:
An earphone with adjustable impedance is provided. The earphone mainly includes an earphone body, a communication line, an earphone plug, an alter switch and an adjustable impedance unit used for adjusting an impedance of the earphone. The adjustable impedance unit is connected between the earphone plug and the earphone body through the alter switch. The impedance of the earphone can be matched on the output impedance of the media player by adjusting the impedance of the adjustable impedance unit when an earphone is connected with a media player.
Abstract:
A system for testing the accuracy of an electronic compass is disclosed. The system includes a circular track, a compass seat, an electromagnetic element, a driver, a power source, a calculator, and a magnetic shielding chamber. The electromagnetic element is disposed on the circular track and powered by the power source to generate a magnetic field. The electronic compass is installed on the compass seat and surrounded by the circular track. As such, the electronic compass can measure the magnetic field of the electromagnetic element and calculate direction relative to the electromagnetic element at different points of the circular track when the electromagnetic element is driven by the driver to move along the circular track. The magnetic shielding chamber is for shielding the electromagnetic element and the electronic compass from interference of external magnetic fields.
Abstract:
An electrical touch pad includes a touch sensor for detecting operational inputs, and generating analog signals according to the operational inputs; a touch detection unit for receiving analog signals, amplifying the analog signals by a controllable gain to generate amplified analog signals, converting the amplified analog signals to generate digital signals, and sending the digital signals to a processor to determine a touched location; a humidity detection unit for detecting ambient humidity and determining a humidity level; and a humidity compensation unit for receiving the humidity level, generating a gain regulation signal to control the touch detection unit to regulate the controllable gain according to the humidity level. Thereby, in erratic behavior of the electrical touch pad can be prevented and stability of the touch pad is enhanced. A related method for regulating sensitivity of the electrical touch pad is also provided.
Abstract:
A scanning circuit includes n rows L1˜Ln, 2n columns P1-1˜P1-n and P2-1˜P2-n, and the n rows L1˜Ln and the n columns P1-1˜P1-n cooperatively form a switch matrix comprising n*n switches S1-1˜Sn-n, with ends of the switches in the same row electrically connected to one of n I/O ports K1˜Kn, respectively, the ends of the switches in the same column are electrically connected to ground via one resistor R1-1˜R1-n, respectively, each of resistors R2-1˜R2-n is electronically connected in one column of the columns P2-1˜P2-n, and connected between one of the I/O ports K1˜Kn and ground via one of the resistors R1-1˜R1-n, respectively. A keyboard and a scanning method are also provided.
Abstract:
A three-phase AC voltage regulator is for adjusting a line voltage on transmission lines. The three-phase AC voltage regulator includes a sampling circuit, a reference-voltage circuit, a comparator, a switch, a power supply, and a compensator. The sampling circuit is for sampling the line voltage. The reference-voltage circuit is for receiving a line-to-line voltage from the transmission lines and generating a standard voltage. The comparator is for comparing the line voltage and the standard voltage to obtain a signal. The switch is for being turned on or off based on the signal. The power supply is for supplying various electric powers to the compensator. The compensator is for receiving the electric power and generating compensating voltages. The compensating voltages are used to compensate the line voltage.
Abstract:
A testing system for measuring an electronic device includes a main controller for generating a control signal, a signal generator for outputting a predetermined test input signal according to the control signal, an instrument unit having a plurality of instruments, and a testing port having a plurality of probes. The plurality of probes connects corresponding testing points of the electronic device to the signal generator and the instruments. The predetermined test input signal is transmitted to the electronic device via the testing port. The instrument unit processes a test result signal outputted by the electronic device and outputs a result data. The main controller receives the result data and computes whether the result data is within a predetermined range. A related testing method is also provided.