-
公开(公告)号:CN109634020B
公开(公告)日:2022-05-10
申请号:CN201811589373.1
申请日:2018-12-25
Applicant: 南京林业大学
IPC: G02F1/1516 , G02F1/153
Abstract: 本发明公开了一种基于纳米纤维素‑银纳米线的电致发光器件,通过以下步骤制备得到:a、以聚二甲基硅氧烷为原料,制备聚二甲基硅氧烷薄膜;b、以聚二甲基硅氧烷薄膜为原料,制备亲水性聚二甲基硅氧烷薄膜;c、以聚二甲基硅氧烷、发光粉、钛酸钡为原料,制备发光层溶液;d、以漂白木浆纤维为原料,制备纳米纤维素悬浮液;e、制备纳米纤维素悬浮液与水性银纳米线分散液的混合液;f、将混合液喷涂在亲水性聚二甲基硅氧烷薄膜表面,旋涂发光层溶液,在顶部层压一层电极,即得。本发明提供的电致发光器件导电性非常稳定、对基底的粘附性强且发光亮度稳定。
-
公开(公告)号:CN112549216B
公开(公告)日:2022-04-15
申请号:CN202011414548.2
申请日:2020-12-04
Applicant: 南京林业大学
Abstract: 本发明公开了一种阻燃胶合板的制备方法,涉及人造板技术领域。本发明通过层层自组装技术,利用阴、阳离子聚电解质之间的静电相互作用,在木材单板表面构建阻燃层,再通过施胶、热压等工艺制备阻燃胶合板。该阻燃胶合板的制备方法,该方法制备得到的胶合板其极限氧指数(LOI)高达33%‑43%,胶合强度高达0.75MPa‑1.25MPa,满足GB/T 9846‑2015《普通胶合板》规定的Ⅱ类胶合板的胶合强度要求标准(0.7MPa),阻燃剂添加药量仅为3‑13%,实现了高效阻燃,并且,此法能够快速适应现有胶合板的生产流程和工艺,具有较好的市场推广价值。
-
公开(公告)号:CN111808315B
公开(公告)日:2022-04-08
申请号:CN202010680284.9
申请日:2020-07-15
Applicant: 南京林业大学
Abstract: 本发明公开了一种调控纳米纤维素气凝胶长程有序结构的方法,其包括,将去离子水置于烧杯中,依次加入2,2,6,6‑四甲基哌啶‑1‑氧自由基、溴化钠、木浆纤维,混合搅拌;加入的次氯酸钠溶液,室温下继续搅拌;反应过程中不断滴加氢氧化钠溶液,加入乙醇终止反应;将产物用去离子水洗至中性,加入去离子水,冰浴条件下超声处理后,制备纳米纤维素分散液;将装有所述分散液的试管底部接触液氮,用注射泵对所述试管施加一个与冰晶生长方向竖直相反的0.06mm/s的速度,保持冰晶前端略高于冷冻液面。本发明解决了传统方法在制备长程多孔气凝胶时,会形成底部小而顶部大的不均匀“倒梯形”孔道结构的问题。
-
公开(公告)号:CN113698795B
公开(公告)日:2022-04-01
申请号:CN202111012240.X
申请日:2021-08-31
Applicant: 南京林业大学
IPC: C09C1/36 , C09C3/12 , C09C3/04 , C09D1/00 , C09D5/18 , C09D179/02 , B27K3/34 , B27K3/16 , B27K5/04
Abstract: 本发明属于阻燃材料和复合板材技术领域,涉及一种表面改性五氧化三钛、制备方法及其在阻燃涂层中的应用。针对现有技术中预警类阻燃涂覆材料效应温度高,热还原速度慢,只有在遭遇明火或时,才能表现出灵敏的预警响应,且热还原具有不可逆和不可控性,预警响应是一次性的,以及使用强酸与强氧化剂,环保负荷大的技术问题,本申请通过将Ti3O5和氨基官能团硅烷偶联剂按质量比20:1~3分散在无水乙醇和/或去离子水的溶剂中,将混合物研磨,制得的表面改性Ti3O5,其具有热还原速度快,预警响应灵敏,可逆可控等优点,且组装时无需强酸、强氧化剂,仅使用水和/或乙醇,组装过程绿色、环保,环境负荷小。
-
公开(公告)号:CN112549216A
公开(公告)日:2021-03-26
申请号:CN202011414548.2
申请日:2020-12-04
Applicant: 南京林业大学
Abstract: 本发明公开了一种阻燃胶合板的制备方法,涉及人造板技术领域。本发明通过层层自组装技术,利用阴、阳离子聚电解质之间的静电相互作用,在木材单板表面构建阻燃层,再通过施胶、热压等工艺制备阻燃胶合板。该阻燃胶合板的制备方法,该方法制备得到的胶合板其极限氧指数(LOI)高达33%‑43%,胶合强度高达0.75MPa‑1.25MPa,满足GB/T 9846‑2015《普通胶合板》规定的Ⅱ类胶合板的胶合强度要求标准(0.7MPa),阻燃剂添加药量仅为3‑13%,实现了高效阻燃,并且,此法能够快速适应现有胶合板的生产流程和工艺,具有较好的市场推广价值。
-
公开(公告)号:CN111808315A
公开(公告)日:2020-10-23
申请号:CN202010680284.9
申请日:2020-07-15
Applicant: 南京林业大学
Abstract: 本发明公开了一种调控纳米纤维素气凝胶长程有序结构的方法,其包括,将去离子水置于烧杯中,依次加入2,2,6,6-四甲基哌啶-1-氧自由基、溴化钠、木浆纤维,混合搅拌;加入的次氯酸钠溶液,室温下继续搅拌;反应过程中不断滴加氢氧化钠溶液,加入乙醇终止反应;将产物用去离子水洗至中性,加入去离子水,冰浴条件下超声处理后,制备纳米纤维素分散液;将装有所述分散液的试管底部接触液氮,用注射泵对所述试管施加一个与冰晶生长方向竖直相反的0.06mm/s的速度,保持冰晶前端略高于冷冻液面。本发明解决了传统方法在制备长程多孔气凝胶时,会形成底部小而顶部大的不均匀“倒梯形”孔道结构的问题。
-
公开(公告)号:CN111805678A
公开(公告)日:2020-10-23
申请号:CN202010719823.5
申请日:2020-07-23
Applicant: 南京林业大学
Abstract: 本发明公开一种阻燃刨花板的制备方法,涉及人造板领域。所述阻燃刨花板的制备方法,首先将刨花干燥至含水率2~4%,然后进行脲醛树脂胶黏剂调制、改性阻燃剂制备。按质量比称取刨花、调制的脲醛树脂胶黏剂和改性阻燃剂。一边搅拌刨花、一边将调制的脲醛树脂胶黏剂和改性阻燃剂依次加入,搅拌均匀,再进行铺装、预压、热压、冷却、裁边、砂光,得到阻燃刨花板。本发明所制备的阻燃刨花板,阻燃剂均匀分散、阻燃性能得以提高,同时能够保证阻燃刨花板的物理力学性能。该方法对脲醛树脂胶黏剂的固化无不利影响,能够快速适应现有刨花板的生产流程和工艺。
-
公开(公告)号:CN111662561A
公开(公告)日:2020-09-15
申请号:CN202010671749.4
申请日:2020-07-13
Applicant: 南京林业大学
IPC: C08L101/00 , C08L97/02 , C08K9/04 , C08K3/32 , B29C48/00
Abstract: 本发明公开一种阻燃、可重复加工型木塑复合材料的制备方法,涉及木塑复合材料领域。所述阻燃、可重复加工型木塑复合材料的制备方法,首先将有机醛类物质分散于乙酸乙酯中,然后加入一定量的聚磷酸铵,再加入分散有胺类物质的乙酸乙酯,制得黄色悬浮液,经干燥得到含亚胺动态共价键的聚磷酸铵固体粉末;再将含亚胺动态共价键的聚磷酸铵固体粉末、植物纤维、塑料进行初混、干燥、塑炼、成型、冷却,制成阻燃、可重复加工型木塑复合材料。通过引入亚胺动态共价键,同步赋予木塑复合材料阻燃性、强韧性和易加工性。性能测试表明,其极限氧指数26.5~31.2%、冲击强度6.4~8.0kJ/m2,熔融黏度降低了72~77%。
-
公开(公告)号:CN107457870B
公开(公告)日:2019-08-13
申请号:CN201710841500.1
申请日:2017-09-18
Applicant: 南京林业大学
IPC: B27M1/06
Abstract: 本发明公开了一种木材表面快速密实碳化的方法,属于木材加工技术领域。它包括将木材制作成待处理尺寸,控制其含水率,将待改性木材和钛金属块固定于夹具上,对钛金属块与待处理木材进行加压,在保持步骤压力的情况下,待处理木材表面与钛金属块接触相对往复振动,停止振动后保持钛金属块与待处理木材静止并施加压力待改性木材表面冷却,分离钛金属块与待处理木材进行卸压,最后就得到改性处理的木材表面。本发明利用钛金属与木材表面加压、振动、摩擦的方法,快速提高木材表面硬度、耐水性能,克服了现有技术中木材改性工艺复杂、成本较高、不环保的缺点,木材表面改性处理过程具有工艺周期短、高效、低成本、绿色环保的特点。
-
公开(公告)号:CN109897196A
公开(公告)日:2019-06-18
申请号:CN201910123905.0
申请日:2019-02-19
Applicant: 南京林业大学
IPC: C08J3/075 , C08L33/26 , C08L5/08 , C08K3/22 , C08F220/56 , C08F222/38 , C08B37/08 , C08J3/24 , C02F1/28 , C02F1/30
Abstract: 本发明属于高分子复合材料领域,公开了一种纳米纤维素-二氧化钛-聚丙烯酰胺复合催化水凝胶及其制备方法和应用。该水凝胶采用下列方法制备得到的:a.制备纳米甲壳素悬浮液;b.制备纳米甲壳素--二氧化钛悬浮液;c.纳米甲壳素--二氧化钛复合物悬浮液中引入丙烯酰胺单体、交联剂、引发剂,搅拌,加入促进剂常温形成凝胶,制得纳米甲壳素-二氧化钛-聚丙烯酰胺复合催化水凝胶。该绿色,无毒水凝胶可作为催化剂的负载材料,实现催化剂循环利用,在水处理上具有较好的应用前景。
-
-
-
-
-
-
-
-
-