-
公开(公告)号:CN114167347A
公开(公告)日:2022-03-11
申请号:CN202111421629.X
申请日:2021-11-26
Applicant: 哈尔滨工程大学
Abstract: 本发明提供一种冲击噪声环境下互质阵列的幅相误差校正和测向方法,首先采用外加辅助源的校正算法得出幅相误差的粗估计值,再用量子哈里斯鹰算法在粗估计相位误差周围进行搜索,可以实现在极低信噪比下对幅相误差进行更精确的估计。同时,在冲击噪声下互质阵列的波达方向估计问题上,本发明所设计的基于量子哈里斯鹰机制的分数低阶协方差结合虚拟矩阵的极大似然测向方法,可在相同信噪比下取得比其他传统算法更低的均方根误差,其中引入的虚拟阵列和空间平滑算法,可有效提高互质阵列的空间自由度。
-
公开(公告)号:CN114158123A
公开(公告)日:2022-03-08
申请号:CN202111423632.5
申请日:2021-11-26
Applicant: 哈尔滨工程大学
IPC: H04W72/04 , H04B7/0426 , H04B7/0452
Abstract: 本发明提供一种智能反射面Massive MIMO系统资源分配方法,包括:建立一个基于智能反射面的Massive MIMO系统模型;初始化量子蝴蝶群;根据全局搜索或局部搜索规则更新量子蝴蝶群的量子位置;计算适应度,根据选择机制确定量子位置,更新感官模态和幂指数;判断迭代是否终止,输出最优分配方案,若迭代次数已经达到设定的最大迭代次数,即t=T,则终止迭代,将量子蝴蝶群的全局最优量子位置输出;否则令t=t+1,返回继续执行步骤三;根据量子位置与位置之间的映射规则得到全局最优位置,进而得到基于智能反射面的Massive MIMO系统资源分配方法。本发明实现最优反射系数充分发挥智能反射面的性能极限来实现Massive MIMO通信系统各种资源的最优分配,从而提高系统的资源利用率及系统的容量。
-