Abstract:
본 발명은 열전효율이 향상된 적층형 유연성 열전소자 및 이의 제조방법에 관한 것이다. 본 발명에 의한 n-형 및 p-형 탄소나노튜브층을 포함하는 적층형 열전소자는 지베크 계수 값이 매우 우수하므로 지베크 계수의 제곱에 비례하는 값인 열전 성능지수(ZT)가 매우 우수하여 기전력이 커지고, 본 발명의 나노탄소필름의 면적을 손쉽게 제어함에 따라 조절할 수 있으므로 대면적화가 유리한 장점이 있으며, 또한, 나노탄소필름을 사용함으로써, 낮은 취성, 화학적 안정성 및 낮은 공정 단가로 생산할 수 있어, 무기계 열전 소자를 대체할 수 있으며, 고 성능지수를 이용하여 냉난방용 고성능 열전소재로도 응용이 가능할 뿐만 아니라 기타 산업분야에서도 폭 넓게 활용될 수 있다.
Abstract:
The present invention relates to a flexible multi-layered thermoelectric device with enhanced thermoelectric efficiency and a fabricating method thereof. The electromotive force of a multi-layered thermoelectric device including a n-type carbon nanotube layer and a p-type n-type carbon nanotube layer increases due to excellent thermoelectric performance index proportional to the square of a Seebeck coefficient due to the excellent Seebeck coefficient. The multi-layered thermoelectric device can easily enlarge by easily controlling the area of the nanocarbon film. The multi-layered thermoelectric device can replace an inorganic thermoelectric device by producing in low brittleness, chemical stability, and a low processing cost by using a nanocarbon film. The multi-layered thermoelectric device can be applied not only as a high performance thermoelectric device for heating and cooling using the performance index but also in many industries.
Abstract:
PURPOSE: A thermally conductive material is provided to improve flexibility, toughness, and processability of a polymer composite by reducing the content of a thermal conductor and to obtain excellent thermal conductivity. CONSTITUTION: A thermally conductive material comprises thermally conductive hollow particles and polymer resins. The thermally conductive hollow particle consists of one selected from carbon nanotubes, graphene, graphite nanosheets, aluminum nitride, boron nitride, and aluminum oxide. The polymer resin is selected from a silicon resin, epoxy resin, and polyethylene resin. The thermally conductive hollow particle is dispersed in the polymer resin with maintaining the hollow shape. [Reference numerals] (AA) Thermally conductive filler; (BB) Polymer matrix; (CC) Thermally conductive hollow particles;
Abstract:
PURPOSE: A manufacturing method of a polymer/nanographene nanocomposite film is provided to be environmentally friendly and to manufacture a polymer nanocomposite with excellent gas blocking and mechanical properties. CONSTITUTION: A manufacturing method of a polymer/nanographene nanocomposite film comprises a step of dispersing a lamellar graphite into a solvent; a step of ultrasonic treating the dispersion liquid in a solution and separating a nanographene sheet; a step of mixing a polymer solution and the nanographene sheet solution and ultrasonic wave treating the mixture; and a step of coating a glass substrate with the ultrasonic-waved mixed solution and drying the coated material to manufacture a film. A nanographene sheet is dispersed in the polymer.
Abstract:
본 발명은 전도성필름 제조방법 및 전도성필름에 관한 것으로, 상기 전도성필름 제조방법은 탄소나노튜브를 용매에 분산시키는 단계와, 상기 용매에 상기 탄소나노튜브의 편석을 유도하는 편석유도 물질을 혼합하는 단계 및 상기 편석유도 물질이 혼합된 상기 탄소나노튜브 분산액을 기판상에 코팅하여 전극층을 형성하는 단계를 포함한다. 이에 의하여 본 발명은 표면의 전기전도도가 균일하고, 광투과성의 정도가 우수한 전도성필름을 구현한다. 전도성필름, 광투과성, 편석유도
Abstract:
PURPOSE: A method for manufacturing a carbon nanotube-epoxy resin complex using a supercritical fluid process and the complex manufactured by the same are provided to uniformly disperse carbon nanotube in a polymeric medium. CONSTITUTION: A method for manufacturing a carbon nanotube-epoxy resin complex includes the following: Carbon nanotube is dispersed in an epoxy curing agent to manufacture a carbon nanotube-curing agent complex based on a supercritical fluid process by adding the carbon nanotube, the epoxy curing agent, and a solvent in a reactor at point which is lower than the critical point of the solvent. An epoxy resin is reacted with the carbon nanotube-curing agent.
Abstract:
PURPOSE: A thermoelectric material containing the carbon nano-tube film of a porous structure and a method for manufacturing the same are provided to improve the electric conductivity of the thermoelectric material by forming three-dimensional network for the carbon nano-tube. CONSTITUTION: Carbon nano-tube(2) is in connection with a three-dimensional network structure. The carbon nano-tube film with a porous structure includes the carbon nano-tube. A thermoelectric material includes the carbon nano-tube film of the porous structure. The three-dimensional network structure includes pores(3). The diameter of a pore is between 10nm and 10um.
Abstract:
본 발명은 전도성필름 제조방법 및 전도성필름에 관한 것으로, 상기 전도성필름 제조방법은 금속 전구체 및 전도성 고분자물질 중 적어도 하나가 혼합된 혼합용액을 형성하는 단계와, 전도성 구조체가 형성되도록 상기 혼합용액을 미립화시켜 기판의 표면에 분사하는 단계, 및 전기전도도를 향상시키도록 상기 전도성 구조체에 탄소나노튜브를 결합시키는 단계를 포함한다. 이에 의하여 본 발명은 전기전도도가 우수하고, 제조가 쉬운 전도성필름을 구현한다. 탄소나노튜브, 전도성필름, 전도성 구조체
Abstract:
PURPOSE: A method for preparing an electrically conductive adhesive is provided to ensure simple processing and short processing time and to prevent environmental contamination. CONSTITUTION: An electrically conductive adhesive comprises a conductive material with a network structure and an adhesive composition applied on the surface of the conductive material. A method for preparing the electrically conductive adhesive comprises the steps of: (i) preparing a spinning solution; (ii) electrospinning the spinning solution; (iii) forming a conductive material with a network structure by heat-treating the electrospun filber; and (iv) applying the adhesive composition on the conductive material to obtain a conductive adhesive.
Abstract:
PURPOSE: A conductive film and a method for manufacturing the same are provided to implement high electric conductivity by combining a carbon nano tube with a conductive structure. CONSTITUTION: A conductive film(100) comprises a light transmission substrate(110) and an electrode layer(120). An electrode layer is comprised of a conductive structure(121) of a plurality of strands. The conductive structure is combined with a carbon nano tube(122). The carbon nano tube is extended from the conductive structure to an empty space on the substrate.