Abstract:
The present invention relates to a method for reforming the surface of a carbon fiber, which can be used as the carbon electrode of a redox flow battery, a carbon fiber having the surface thereof reformed thereby, and a carbon electrode and a redox flow battery including the carbon fiber having the surface thereof reformed thereby. The method for reforming the surface of a carbon fiber according to the present invention comprises the steps of: supporting the carbon fiber on a solvent containing a hydroxyl group; treating, with supersonic waves, the carbon fiber supported on the solvent containing a hydroxyl group; and thermally treating the carbon fiber treated with supersonic waves. The carbon fiber having the surface thereof reformed according to the present invention can improve the electrochemical properties of the carbon fiber by maximizing the specific surface area of the carbon fiber because the surface of the carbon fiber is reformed to be hydrophilic and has mesopores formed thereon. Therefore the carbon fiber having the surface thereof reformed according to the present invention can be used as the carbon electrode of a redox flow battery.
Abstract:
PURPOSE: A redox flow battery is provided to exclude a bipolar plate frame by integrating a manifold and a bipolar plate and to reduce a work time for laminating stacks. CONSTITUTION: A redox flow battery includes a pair of end plates which has an electrolyte inlet and an electrolyte outlet; a current collector inside the end plate; an end manifold which is placed inside the current collector, has a bipolar plate (110) mounted on a side corresponding to the current collector and an electrode inserted onto the opposite side; and an integrated composite electrode cell which is placed between the end manifolds and includes a first manifold (121) in which a first electrode is inserted, a second manifold (122) in which a second electrode is inserted, and the bipolar plate placed between the first and second manifolds.
Abstract:
PURPOSE: A redox flow battery is provided to improve output of a battery by a simple method without sudden increase of volume. CONSTITUTION: A redox flow battery has a structure formed by laminating two or more unit cells which includes manifold(40) with reaction parts(43,73,73') having different polarity from each other. The redox flow battery has a first end plate(10) which has different electrolyte inlets(11,11'); a second end plate(20) which has electrolyte outlets(21,21'); two or more current collectors(30,30') having different polarities; and a series and parallel connection element(80) formed on the front side of the second end plate.