Abstract:
PURPOSE: By presuming the large-scale fading value of user and controlling the power control mode the control method for minimizing the PAR can minimize PAR. CONSTITUTION: A large-scale fading values of all users are presumed. The number of users in which the large-scale fading value bigger than the standards fading value is counted. The number of subcarrier which users counted use is counted. It is controlled to the power control mode. The large-scale amplitude value of user is presumed. The TX power is adjusted if the large-scale amplitude value is not similar of the reference amplitude value(320). The transmission signal becomes to the TX power adjusted(330).
Abstract:
PURPOSE: A frequency sharing driver and a method thereof of the mobile satellite service using the ground auxiliary device of satellite and satellite are provided to reuse the frequency band of the satellite down link in the satellite ground auxiliary device of the ground. CONSTITUTION: A signal intensity measurement part(205) measures the signal intensity received from the satellite. According to the communications mode decision part(207) is the signal intensity measured at as described above, the communications mode is decided. According to the communications unit(209) is the communications mode, it communicates among the ground auxiliary device of satellite and satellite with one apparatus.
Abstract:
PURPOSE: A method for interaction between ARQ and HARQ of a system with a long shuttling delay time is provided to quickly cope with a transmission error by re-transmitting a packet of a window on standby when an error in which NACk of HARQ is mistaken for ACK occurs. CONSTITUTION: A transmission buffer(210) and a transmit window are influenced by the HARQ feedback information. A buffer on standby(220) and an window on standby are influenced by a status report information packet(230). The buffer on standby detects an error in which NACK is recognized as ACK in HARQ. The buffer on standby re-transmits the packet of the buffer on standby by receiving feedback information concerning the error.
Abstract:
PURPOSE: A mobile satellite communications apparatus and a method thereof are provided, which maximizes frequency use efficiency. CONSTITUTION: If data are received from a mobile terminal, a satellite signal sensing part(421) senses a satellite signal. A subcarrier deciding unit(423) recognizes a subcarrier group used for communications between a mobile terminal and a satellite using a satellite signal. A communications unit(425) communicates with the mobile terminal using subcarrier groups except for the subcarrier group. If the ground auxiliary device locates in the central area of a beam, the subcarrier deciding unit recognizes the first subcarrier group used in communications between the satellite locating in the border of the beam and the mobile terminal.
Abstract:
PURPOSE: A diversity method using an error correction code is provided to combine an error correction code transmitted from a different relay device in a user terminal, thereby obtaining a diversity gain. CONSTITUTION: A diversity method using an error correcting code comprises the following steps. An input bit string which is an encoding target is error-correction encoded to generate a mother code(302). The generated mother code is punched to obtain an error-correction code including systematic information and particle parity information(304). The obtained error-correction code is transmitted(306).
Abstract:
송신기는 수신기로부터 피드백 정보를 수신하고, 피드백 정보를 바탕으로 무선 채널의 채널 환경을 예측한다. 이후 채널 환경에 대응하는 변조 방식에 따라 주파수 다중화 신호를 생성하고, 생성된 주파수 다중화 신호를 전송한다. 이를 통해 인접 반송파 간섭을 제거할 수 있다. 반송파, 간섭, OFDM, 주파수 옵셋, 시공간 코드
Abstract:
An apparatus for tracking polarized waves is provided to track the polarization of transmission signals to a satellite, thereby solving inconsistency of the polarization due to the change in the posture of a satellite or terrestrial terminal and the environment. A polarization tracking apparatus for reception comprises the followings: a feeder(303) which receives vertically and horizontally polarized waves to find out vertical and horizontal polarization factors; a polarization estimator(305) which estimates the deformation of polarization by using the vertical and horizontal polarization factors outputted from the feeder; a polarization controller(307) which controls the amplitude of vertically and horizontally polarized waves and phase information based on the estimated transformation information and signals; and a combiner(311) which combines the vertically and horizontally polarized waves controlled by the controller.
Abstract:
A method and an apparatus for detecting a timing synchronization are provided to obtain a timing synchronization accurately without changing a predefined training symbol. A time synchronization detecting apparatus includes a first sequence generator(10) and a synchronization unit(11). The first sequence generator generates plural first data sequences from a received signal. The synchronization portion correlates the first data sequence with a second data sequence and determines an FFT(Fast Fourier Transform) timing of the received signal by using the correlation result. The first sequence generator includes a mapper, a complex conjugate portion, and a multiplier. The mapper extracts a portion of the received signal and maps the received signal to plural third data sequences. The multiplier multiplies a complex conjugate of the data sequence with other data sequences to output the first data sequence.
Abstract:
1. 청구범위에 기재된 발명이 속한 기술분야 본 발명은 ATC(Ancillary Terrestrial Components)를 포함하는 위성/이동통신 시스템에서 핸드오버를 고려한 전력제어 방법에 관한 것임. 2. 발명이 해결하려고 하는 기술적 과제 본 발명은 ATC를 포함하는 다중사용자 위성/이동통신 시스템에서 위치정보를 이용한 효율적인 전력제어 및 핸드오버 기법을 적용하여, 원하는 서비스품질(QoS)을 만족하면서 각 사용자의 수신신호대간섭비를 일정하게 유지할 수 있도록 하기 위한, 핸드오버를 고려한 전력제어 방법을 제공하는데 그 목적이 있음. 3. 발명의 해결방법의 요지 본 발명은, ATC(Ancillary Terrestrial Components)를 포함하는 위성/이동통신 시스템에서의 전력제어 방법에 있어서, 단말기의 현재 위치정보를 획득하는 단계; 상기 단말기의 현재 전송전력 정보를 획득하는 단계; 및 상기 위치정보를 바탕으로 상기 단말기의 위치를 인지하고, 셀 혹은 빔 가장자리에서 상기 단말기의 속도정보를 측정하여, 상기 속도정보에 의한 이동에 따라 수신 다이버시트를 이용해 상기 현재 전송전력 정보와 '상기 단말기가 존재하는 영역에 중첩되는 시스템들의 전송 전력 동작범위'를 바탕으로 핸드오버를 고려한 전력제어를 수행하는 제1 전력제어 단계를 포함한다. 4. 발명의 중요한 용도 본 발명은 ATC를 포함하는 위성 또는 이동통신 시스템 등에 이용됨. ATC, 핸드오버, 전력제어, 폐루프 전력제어, 개방루프 전력제어, 왕복지연 보상
Abstract:
A method of preventing successive packet errors according to a full receiver buffer in a selective repeat hybrid ARQ(Automatic Repeat Request) system is provided to efficiently use a bandwidth in case of coupling and using a hybrid ARQ and a selective ARQ in a system with a long round trip delay time. A method of preventing successive packet errors according to a full receiver buffer in a selective repeat hybrid ARQ(Automatic Repeat Request) system includes the steps of: transmitting a data packet to a receiver from a central station(401); checking the storage information of the data packet in an NACK(Negative ACKnowledgement) packet(404); storing the data packet in a re-transmission queue after transmitting a packet of parity bits to the receiver in case that the data packet is stored in the buffer(405,406); and maintaining the data packet stored in a transmission queue after re-transmitting the data packet in case that the data packet is not stored in the buffer(407,408).