Abstract:
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for retrieving local information on a user device include detecting itinerary information stored by a first application on a user device, and identifying a travel destination based on the detected itinerary information. The travel destination is communicated to a second application executable on a user device, and the travel destination is stored in association with the second application. The second application is adapted to retrieve local information based on an identified geographic location, and local information for the travel destination is provided through the second application in response to a user interaction with the second application and based on a triggering threshold associated with the itinerary information.
Abstract:
A processor-based personal electronic device (such as a smartphone) is programmed to automatically respond to data sent by various sensors from which the user's activity may be inferred. A wireless communication link may be used by the device to obtain data from remote sensors which may be worn by the user. A personal “scorecard” may be generated from the raw data and from data concerning other users. Personal, raw characterization data may be computed into personal statistical data by averaging over time. Then, it may be sent (anonymously) to a server that receives such data from many (or all) users. The server may return personal statistical positioning to enable comparison of the user to other participants. In certain embodiments, the generation of a personal scorecard from the personal position in the group statistics may be performed in the user's device.
Abstract:
A telephone number corresponding to an incoming telephone call may be utilized to obtain information associated with the incoming call. If it is determined that the telephone number does not match records stored on the device on which the call is received, a request may be sent from the receiving device to an external device to obtain information associated with the incoming call. The request may be directed to a remote contacts application, another device listed in a data store of the receiving device, or to the calling device itself. When a response is received, the information may be displayed or otherwise utilized by the receiving device.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for retrieving local information on a user device include detecting itinerary information stored by a first application on a user device, and identifying a travel destination based on the detected itinerary information. The travel destination is communicated to a second application executable on a user device, and the travel destination is stored in association with the second application. The second application is adapted to retrieve local information based on an identified geographic location, and local information for the travel destination is provided through the second application in response to a user interaction with the second application and based on a triggering threshold associated with the itinerary information.
Abstract:
A processor-based personal electronic device (such as a smartphone) is programmed to automatically respond to data sent by various sensors from which the user's activity may be inferred. One or more alarms on the device may be temporarily disabled when sensor data indicates that the user is asleep. One or more of the sensors may be worn by the user and remote from the device. A wireless communication link may be used by the device to obtain remote sensor data. Data from on-board sensors in the device—such as motion sensors, location sensors, ambient light sensors, and the like—may also be used to deduce the user's current activity. User data (such as calendar entries) may also be used to determine likely user activity and set alarms accordingly. Biometric data from a second, nearby person may also be used to automatically select certain alarm modes on a first person's device.
Abstract:
A processor-based personal electronic device (such as a smartphone) is programmed to automatically respond to data sent by various sensors from which the user's activity may be inferred. One or more alarms on the device may be temporarily disabled when sensor data indicates that the user is asleep. One or more of the sensors may be worn by the user and remote from the device. A wireless communication link may be used by the device to obtain remote sensor data. Data from on-board sensors in the device—such as motion sensors, location sensors, ambient light sensors, and the like—may also be used to deduce the user's current activity. User data (such as calendar entries) may also be used to determine likely user activity and set alarms accordingly. Biometric data from a second, nearby person may also be used to automatically select certain alarm modes on a first person's device.
Abstract:
A processor-based personal electronic device (such as a smartphone) is programmed to automatically respond to data sent by various sensors from which the user's activity may be inferred. One or more alarms on the device may be temporarily disabled when sensor data indicates that the user is asleep. One or more of the sensors may be worn by the user and remote from the device. A wireless communication link may be used by the device to obtain remote sensor data. Data from on-board sensors in the device—such as motion sensors, location sensors, ambient light sensors, and the like—may also be used to deduce the user's current activity. User data (such as calendar entries) may also be used to determine likely user activity and set alarms accordingly. Biometric data from a second, nearby person may also be used to automatically select certain alarm modes on a first person's device.
Abstract:
A mobile device can obtain wireless network signal strength map data that indicates, for various nearby geographical regions, the wireless network signal strength in each such region. A mobile device can transmit that data to a vehicular navigation system responsible for automatically selecting a high-quality route of vehicular travel between a specified source and destination. The system can take the wireless network signal map data into account when selecting that route. When selecting from among multiple different routes of vehicular travel between a specified source and destination, the system may employ an algorithm that considers wireless network signal strengths along those routes, in addition to the other factors. Consequently, the system can select a longer route having better signal strength over a shorter route having worse signal strength. The system can present the selected route within a set of suggested routes, potentially along with reasons for each route's suggestion.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for retrieving local information on a user device include detecting itinerary information stored by a first application on a user device, and identifying a travel destination based on the detected itinerary information. The travel destination is communicated to a second application executable on a user device, and the travel destination is stored in association with the second application. The second application is adapted to retrieve local information based on an identified geographic location, and local information for the travel destination is provided through the second application in response to a user interaction with the second application and based on a triggering threshold associated with the itinerary information.
Abstract:
An event analysis engine on a user device may be configured to receive information representative of a user event and to determine a type of the event according to the received information. One or more tasks associated with the determined type of event may be identified. Each of the identified tasks may be associated with a reminder having a trigger condition that is a function of information specific to the task. The task-specific information may be retrieved and the reminders associated with the tasks may be displayed when a device condition matches a calculated trigger condition for the reminder. Each task may be identified as completed when a completion condition associated with the task is satisfied.