Abstract:
A negative electrode for battery is provided. The negative electrode comprises a current collector and a negative electrode material coat on the current collector. The negative electrode material comprises carbonaceous material, binder, and lithium titanium oxide compound, wherein in the negative electrode material coat, the carbonaceous material has total weight percentage content higher than that of the lithium titanium oxide compound; and the negative electrode material coat comprises at least two layers; in the outermost layer of the negative electrode material coat, the carbonaceous material has weight percentage content lower than that of the lithium titanium oxide compound; in other layers of the negative electrode material coat, the carbonaceous material has weight percentage content higher than that of the lithium titanium oxide compound. A lithium ion battery using the negative electrode is provided.
Abstract:
A type of winding assembly type lithium ion secondary power battery includes: winding assembly type electrode cores wound with positive electrodes, negative electrodes and a separation membrane, electrolyte, and a battery shell. Its characteristics are: the interior of the battery shell carries at least one electrode units formed by electrode holders holding many stacked electrode cores. The terminal leads of the current collector for all positive and negative electrode cores are led from the upper and lower ends of the electrode unit respectively. The positive and negative terminals on cover boards and the outer side of the cover boards are connected to terminal leads of the current collector by built-in fasteners. There is a separation ring between the electrode core body of the battery and the cover boards of the battery. The present invention simplifies the manufacturing technology, increases the energy density of the battery, the mechanical property and safety property of the battery, and has an excellent high discharge property.
Abstract:
A battery module is provided, including a plurality of battery units stacked along a preset direction and a top panel, where the battery unit includes a battery and an insulation film, the battery includes a battery housing, a battery core disposed inside the battery housing, and a battery cover plate disposed on an end portion of the battery housing; the insulation film is coated at least on a side face of the battery housing, the insulation films of every two adjacent battery units are bonded to each other in the preset direction to connect the plurality of battery units together; and the insulation film includes an extension portion, where the extension portion is formed by a top portion of the insulation film which protrudes from the battery cover plate and extends upward, the top panel is disposed on an upper side of the battery unit, a groove is provided on a lower side of the top panel, and at least part of the extension portion is accommodated in the groove. The present disclosure realizes weight reduction of the battery module without decreasing the strength of the battery module.
Abstract:
The present disclosure relates to a battery cover assembly, a battery cell, a battery module, a power battery pack and an electric vehicle. The battery cover assembly includes a cover plate 104, an electrode inner terminal and an electrode outer terminal. The electrode inner terminal is electrically connected to the electrode outer terminal through a current interrupt structure disposed on the cover plate 104. The current interrupt structure includes a sealed chamber 103 configured to fill a gas-producing medium therein. The sealed chamber 103 is configured to make the gas-producing medium to be electrically connected to positive electrodes and negative electrodes of a battery. When a voltage difference between the positive electrodes and negative electrodes of the battery exceeds a rated value, the gas-producing medium is capable of producing gas, to disrupt the electrical connection between the electrode inner terminal and the electrode outer terminal under the action of the pressure of the gas. That is, gas production in the sealed chamber in the cover assembly is independent of gas production inside the battery, so that gas pressure can be formed for the current interrupt structure in time to activate the current interrupt structure in time, thereby improving the battery safety.
Abstract:
The present disclosure provides an automobile tray component, including a tray base plate and mounting beams arranged around the tray base plate, where the tray base plate includes an upper plate body, a intermediate plate body, and a lower plate body, a cooling cavity is arranged between the upper plate body and the intermediate plate body, and a cushioning cavity is arranged between the intermediate plate body and the lower plate body. The automobile tray component provided in the present disclosure has good performance of heat dissipation while being capable of providing a cushioning effect when an impact occurs, occupies little space and has high safety performance.
Abstract:
An electrochemical storage cell having a coiled core is disclosed. The coiled core includes a cathode sheet, an anode sheet, and a separator sheet. An anode connector is connected with the anode sheet at a first end of the coiled core and a cathode connector is connected with the cathode sheet at a second, opposite end of the coiled core. The coiled core has a length Lcore and a width Wcore and each connector has a width Wconnector. The length of the coiled core Lcore, width of the coiled core Wcore, and width of each connector Wconnector have the relationship 0core-Wconnector)/Lcore
Abstract:
Disclosed herein is a heat dissipating device for a battery pack which comprises a heat pipe and a heat collecting plate comprising a bottom heat collecting plate and an upper heat collecting plate each having a hole therein, wherein two ends of the heat pipe are inserted respectively into the holes in the bottom heat collecting plate and the upper heat collecting plate. A battery using the heat dissipating device is also disclosed. During the operation of the heat dissipating device, since the heat generated by the cells can be colleted in the upper heat collecting plate, then transmitted to the bottom heat collecting plate through the heat pipe, and finally dissipated outwardly by the bottom heat collecting plate, the heat generated by cells can be dissipated rapidly and efficiently.
Abstract:
An electrochemical storage cell having a coiled core is disclosed. The coiled core includes a cathode sheet, an anode sheet, and a separator sheet. An anode connector is connected with the anode sheet at a first end of the coiled core and a cathode connector is connected with the cathode sheet at a second, opposite end of the coiled core. The coiled core has a length Lcore and a width Wcore and each connector has a width Wconnector. The length of the coiled core Lcore, width of the coiled core Wcore, and width of each connector Wconnector have the relationship 0core-Wconnector)/Lcore
Abstract:
An electrochemical storage cell having a coiled core is disclosed. The coiled core includes a cathode sheet, an anode sheet, and a separator sheet. An anode connector is connected with the anode sheet at a first end of the coiled core and a cathode connector is connected with the cathode sheet at a second, opposite end of the coiled core. The coiled core has a length Lcore and a width Wcore and each connector has a width Wconnector. The length of the coiled core Lcore, width of the coiled core Wcore, and width of each connector Wconnector have the relationship 0core-Wconnector)/Lcore