Abstract:
The present application describes novel barbituric acid derivatives of formula I: or pharmaceutically acceptable salt or prodrug forms thereof, wherein A, B, L, R1, R2, R3, R4, R5, n, W, U, X, Y, Z, Ua, Xa, Ya, and Za are defined in the present specification, which are useful as TNF-α converting enzyme (TACE) and matrix metalloproteinases (MMP) inhibitors.
Abstract:
Disclosed are compounds of formula (I) and pharmaceutically acceptable salts thereof. The compounds of formula (I) inhibit tyrosine kinase activity of JAK3, thereby making them useful for the treatment of inflammatory and autoimmune diseases.
Abstract:
The present invention provides compounds of formula I and pharmaceutically acceptable salts thereof. The formula I compounds inhibit tyrosine kinase activity of JAK3, thereby making them useful for the treatment of inflammatory and autoimmune diseases.
Abstract:
Compounds having the formula (I), and enantiomers, and diastereomers, pharmaceutically-acceptable salts, thereof, (I) are useful as kinase modulators, including Btk modulation, wherein A1, A2, A3, R4 are as defined herein.
Abstract:
Disclosed are compounds of Formula (I), and pharmaceutically acceptable salts thereof. The compounds of formula (I) inhibit tyrosine kinase activity of JAK3, thereby making them useful for the treatment of inflammatory and autoimmune diseases.
Abstract:
A MOS transistor (60, 62) is provided. The structure of the transistor (60, 62) includes: a semiconductor substrate (10), a channel area (20, 24), source/drain regions (22, 26), a gate (30, 32), a gate insulating layer (11), a shallow trench isolation region (12), a passive layer (50, 52), and holes (40, 42) formed with a certain distance to the gate insulating layer (11). Wherein both the shapes of the holes (40, 42) and the Young's modulus' difference between the material in the holes (40, 42) and that around the holes (40, 42) contribute to the stress concentration effect, thus the stress in the channel area (20, 24) is enhanced. The structure of the transistor (60, 62) can greatly reduce the stress attenuation during the transmission from stress resource to the sensitive region, and concentrate the stress in the sensitive region. The structure can be involved in large size device, especially.
Abstract:
Novel non-steroidal compounds are provided which are useful in treating diseases or disorders associated with modulation of the glucocorticoid receptor, AP-1, and/or NF-κB activity, including metabolic and inflammatory and immune diseases or disorders, having the structure of formula (I): an enantiomer, diastereomer, or taυtomer thereof, or a prodrug ester thereof, or a pharmaceutically-acceptable salt thereof, in which: Z is heterocyclo or heteroaryl; •A is a S- to 8-membered carbocyclic ring or a S- to 8-membered heterocyclic ring; B1 and B2 rings are pyridyl rings, wherein the B1 and B2 rings are each fused to the A ring and the B1 ring is optionally substituted by one to three groups which are the same or different and are independently selected from R1, R2, and R4, and the B2 ring is optionally substituted by one to three groups which are the same or different and are independently selected from R5, R7, and R3 J1, J2, and J3 are at each occurrence the same or different and are independently -A1QA2-; Q is a bond, O, S, S(O), or S(O)2; A1 and A2 are the same or different and are at each occurrence independently selected from a bond, C1-3 alkylene, substituted C1-3 alkylene, C2-4 alkenylene, and substituted C2-4 alkenylene, provided that A1 and A2 are chosen so that ring A is a 5- to 8-membered carbocyclic or heterocyclic ring; R1 to R11 are as defined herein.
Abstract:
Compounds having the formula (I), and enantiomers, and diastereomers, pharmaceutically-acceptable salts, thereof, (I) are useful as kinase modulators, including Btk modulation, wherein A1, A2, A3, R4 are as defined herein.
Abstract:
A system (200) and method (800) for determining whether a sample object (203) has a color that is within a predetermined range is provided. The system (200) includes a light source (201) capable of projecting lights having different light wavelength spectrum upon the sample object (203). A controller (222) causes the light source (201) to project a first light wavelength spectrum upon the sample object (203), then another, then another, and so forth. While each light is projecting upon the object, a monochromatic image capture device (202) captures an image having luminous intensity information. The luminous intensity information, or a subset thereof selected by an image selection tool (232) is then compared to the statistical range, which is derived from a plurality of images taken of a reference object (403).