Abstract:
A combustion system such as a furnace or boiler includes a perforated reaction holder configured to hold a combustion reaction that produces very low oxides of nitrogen (NOx).
Abstract:
A combustion system includes a perforated flame holder configured to hold a main combustion reaction substantially between input and output faces thereof. A main fuel nozzle is positioned to emit a main fuel stream toward the input face. An igniter assembly is configured to ignite a preheat flame supported by the main fuel stream between the main fuel nozzle and the perforated flame holder, and to selectably control a degree of ignition of the fuel stream by the preheat flame. During a start-up of the combustion system, the perforated flame holder is preheated by the preheat flame. When the perforated flame holder reaches a start-up temperature, the preheat flame is shifted from fully igniting to partially igniting the fuel stream, allowing fuel and oxidant to reach the perforated flame holder. A flame is ignited in the perforated flame holder while the preheat flame burns. The preheat flame is then released.
Abstract:
A combustion system such as a furnace or boiler includes a perforated reaction holder configured to hold a combustion reaction that produces very low oxides of nitrogen (NOx).
Abstract:
A horizontally-fired flame burner includes a flame holder positioned laterally from the burner. The flame holder includes a plurality of perforations that collectively confine a combustion reaction of the burner to the flame holder.
Abstract:
A burner system includes a plurality of burners, each having a nozzle positioned to emit a stream of fuel into a combustion volume, and a perforated flame holder, including a plurality of apertures extending between first and second faces thereof, and positioned to receive a stream of fuel from the respective nozzle. In operation, the flame holders are configured to hold a flame substantially within the plurality of apertures.
Abstract:
A combustion system includes a fuel and oxidant source (101) that outputs fuel and oxidant, a first perforated flame holder (102), and a second perforated flame holder (102) separated from the first perforated flame holder by a gap (105). The first and second perforated flame holders sustain a combustion reaction of the fuel and oxidant within the first and second perforated flame holders.
Abstract:
A down-fired flame burner includes a flame holder positioned below the burner. The flame holder includes a plurality of perforations that collectively confine a combustion reaction of the burner to the flame holder.
Abstract:
A perforated flame holder and burner including a perforated flame holder provides reduced oxides of nitrogen (NOx) during operation. The perforated flame holder includes a pattern of elongated apertures extending between a proximal and a distal surface of the flame holder relative to a fuel nozzle. The perforated flame holder can provide a significantly reduced flame height while maintaining heat output from the burner.