Abstract:
A microwave ablation system includes an antenna assembly configured to deliver microwave energy from a power source to tissue and a coolant source operably coupled to the power source and configured to selectively provide fluid to the antenna assembly via a fluid path. The system also includes a controller operably coupled to the power source and a sensor operably coupled to the fluid path and the controller. The sensor is configured to detect fluid flow through the fluid path and the controller is configured to control the energy source based on the detected fluid flow.
Abstract:
A surgical instrument is provided including a handle assembly, a shaft electrically coupled to the handle assembly and extending therefrom, an electrode assembly electrically coupled to the shaft for transmitting energy to tissue to treat tissue, and a chamber defined in the shaft and positioned proximal a distal end thereof and configured to selectively expand. The expansion of the chamber anchors the surgical instrument to the tissue.
Abstract:
A microwave energy delivery and measurement system, including a microwave generator and a microwave energy delivery device, for performing medical procedures, and a remote power coupler system for measuring one or more parameters of the microwave energy signal including a remote RF sensor housed in the microwave energy delivery device and a power coupler processer coupled with the processing unit of the microwave energy delivery device.
Abstract:
A method of adjusting an ablation field radiating into tissue includes the initial steps of providing an energy applicator and providing one or more microwave field-detecting needle assemblies. Each microwave field-detecting needle assembly includes one or more rectifier elements capable of detecting microwave field intensity via rectification. The method includes the steps of positioning the energy applicator and the one or more microwave field-detecting needle assemblies in tissue, transmitting energy from an energy source through the energy applicator to generate an ablation field radiating about at least a portion of the energy applicator into tissue, and adjusting the ablation field radiating about at least the portion of the energy applicator into tissue based on at least one electrical signal transmitted by the one or more microwave field-detecting needle assemblies.
Abstract:
A microwave ablation system includes an energy source adapted to generate microwave energy and a plurality of energy delivery devices having a first energy delivery device configured to be inserted into tissue and to generate a non-directional ablation volume and a second energy delivery device configured to be positioned relative to the tissue and to generate a directional ablation volume. The system also includes a power dividing device having an input adapted to connect to the energy source and a plurality of outputs configured to be coupled to the plurality of energy delivery devices. The power dividing device is configured to selectively divide energy provided from the energy source between the plurality of energy delivery devices.
Abstract:
An ablation system including an image database storing a plurality of computed tomography (CT) images of a luminal network and a navigation system enabling, in combination with an endoscope and the CT images, navigation of a locatable guide and an extended working channel to a point of interest. The system further includes one or more fiducial markers, placed in proximity to the point of interest and a percutaneous microwave ablation device for applying energy to the point of interest.
Abstract:
A microwave ablation system includes an antenna assembly configured to deliver microwave energy from a power source to tissue and a coolant source operably coupled to the power source and configured to selectively provide fluid to the antenna assembly via a fluid path. The system also includes a controller operably coupled to the power source and a sensor operably coupled to the fluid path and the controller. The sensor is configured to detect fluid flow through the fluid path and the controller is configured to control the energy source based on the detected fluid flow.
Abstract:
According to one aspect of the present disclosure, a microwave antenna assembly is disclosed. The antenna assembly includes a feedline having an inner conductor, an outer conductor and an inner insulator disposed therebetween and a radiating portion including a dipole antenna having a proximal portion and a distal portion. The antenna assembly also comprises a sheath disposed over the feedline and the radiating portion defining a chamber around the feedline and the radiating portion. The chamber is adapted to circulate coolant fluid therethrough. The antenna assembly further includes a connection hub having cable connector coupled to the feedline, an inlet fluid port and an outlet fluid port. The connection hub includes a bypass tube configured to provide for flow of the coolant fluid from the cable connector directly to the outlet fluid port.
Abstract:
A microwave ablation catheter is provided. The microwave ablation catheter includes a coaxial cable connected at its proximal end to a microwave energy source and at its distal end to a distal radiating section. The coaxial cable includes inner and outer conductors and a dielectric positioned therebetween. The inner conductor extends distally past the outer conductor and is in sealed engagement with the distal radiating section. A balun is formed in part from a conductive material electrically connected to the outer conductor of the coaxial cable and extends along at least a portion of the coaxial cable. The conductive material has a braided configuration and is covered by at least one insulative material.
Abstract:
A surgical ablation system employing an ablation probe having a deployable ground plane is disclosed. The disclosed system includes a source of ablation energy and a source of electrosurgical energy, and a switching assembly configured to select between ablation and electrosurgical modes. The probe includes a cannula having a shaft slidably disposed therein. The shaft includes a deployable ground plane electrode assembly and a needle electrode disposed at distal end of the shaft. As the shaft is extended distally from the cannula, the ground plane electrode unfolds, and the needle electrode is exposed. Electrosurgical energy is applied to tissue via the needle electrode to facilitate the insertion thereof into tissue. Ablation energy is applied to tissue via the needle electrode to achieve the desired surgical outcome. The shaft, ground plane electrode and needle electrode are retracted into the cannula, and withdrawn from the surgical site.