Abstract:
A node (e.g., base station, signal processing unit) is described herein that includes a symbol detector and a method which are capable of suppressing interference caused by one user device (which may be in softer handoff mode) to reduce performance degradation to other intra-cell user devices and/or other inter-cell user devices (which may not be in softer handoff mode).
Abstract:
In a selective MIMO system, the mobile station provides channel quality feedback for one or more possible transmission mode. The mobile station provides channel quality feedbac for a first mode regardless of channel conditions and determines whether to provide feedback for one or more additional modes based on current channel conditions.
Abstract:
A wireless communication receiver improves signal impairment correlation estimation in MIMO/MISO systems by considering different transmit power allocations and different transmit antenna power distributions in its impairment correlation calculations. The receiver may be implemented in according to a variety of architectures, including, but not limited to, Successive Interference Cancellation (SIC) Generalized RAKE (G-RAKE), Joint Detection (JD) G-RAKE, and Minimum Mean Squared Error (MMSE) G-RAKE. Regardless of the particular receiver architecture adopted, the improved impairment correlations may be used to calculate improved (RAKE) signal combining weights and/or improve channel quality estimates for reporting by receivers operating in Wideband CDMA (W-CDMA) systems transmitting HSDPA channels via MIMO or MISO transmitters. A transmitter may be configured to facilitate impairment correlation determinations by wireless communication receivers operating in MIMO/MISO environments, by signaling one or more values, e.g., data-to-pilot signal transmit power ratios and/or transmit antenna power distributions for the data and pilot signals.
Abstract:
A CDMA communication system uses a RAKE receiver, a code correlator and a multi-code joint detector to jointly detect symbols in two or more received signals contained within a composite signal. The RAKE receiver separates the composite signal into two or more RAKE output signals by despreading the composite signal using selected spreading codes. The multi-code joint detector jointly detects the symbols in the received signals using the RAKE receiver output signals, cross-correlations between the spreading codes generated by the code correlator, and RAKE combining weights based on a noise covariance matrix. The multi-code joint detector also includes a trellis that represents possible states and state transitions and a branch metric calculator for calculating branch metrics associated with the state transitions based on the RAKE receiver output signals and the cross-correlations between the spreading codes.
Abstract:
In one aspect, the present invention improves Turbo equalization and/or soft interference cancellation processing in communication receivers by providing an efficient and accurate technique to compute the second moment of a received symbol, e.g., an interfering symbol, as a function of the expected bit values of only those bits in the symbol that are magnitude- controlling bits according to a defined modulation constellation. Advantageously, the expected bit values in at least one embodiment are computed using a LUT that maps bit LLRs to corresponding hyperbolic tangent function values. Further, the expected symbol value is computed as a linear function of terms comprising the expected bit values and the soft symbol variance is efficiently computed from the second moment and the expected symbol value squared. This simplified processing reduces receiver complexity, particularly in the context of modulation constellations having non-constant magnitudes, and thus saves power and/or improves design economics.
Abstract:
Devices and methods for suppressing interference in inter-cell and intra* ceil network communication. First and second received signals are received at a communication device, the first and second received signals comprising, respectively, reference signais and data signais. Estimated channel vectors are calculated from the first received signals, and estimated data covanance matrices are calculated from the second received signals. A plurality of combining weight vectors are determined based on the estimated channel vectors and the estimated data covariance matrices. The second received signals are then combined with the plurality of combining weight vectors to obtain a plurality of combined signals, wherein interference in the second received signals has been suppressed in the plurality of combined signals.
Abstract:
Teachings presented herein offer reduced computational complexity for detecting a plurality of symbol blocks, even for symbol blocks that comprise the combination of a relatively large number of symbols The teachings perform two or more stages of detection assistance to successively reduce the number of candidate combinations of symbols to be considered for a symbol block when detecting the plurality of symbol blocks. In particular, the teachings identify a reduced set of candidate symbol combinations for at least one symbol block m the plurality ?f symbol blocks, and then jointly detect each of one or more distinct groups of symbols in the symbol block to determine from that reduced set a final reduced set of candidate symbol combinations. Detection of the plurality of symbol blocks limits the candidate combinations of symbols considered for a symbol block to the final reduced set of candidate symbol combinations identified for that symbol block.
Abstract:
Multi-transmitter interference caused by one or more interfering own-cell and/or other- cell transmitters is reduced in a RAKE-based receiver. The RAKE-based receiver comprises a plurality of RAKE fingers, a processor and a combiner. The plurality of RAKE fingers are configured to despread received symbols, wherein a delay for a first one of the plurality of RAKE fingers corresponds to a symbol of interest transmitted by a first transmitter and a delay for a second one of the plurality of RAKE fingers corresponds to an interfering symbol transmitted by a second transmitter. The processor is configured to determine a cross-correlation between the symbol of interest and the interfering symbol. The combiner is configured to combine the symbol of interest with the interfering symbol using the cross-correlation to reduce interference attributable to the interfering symbol from the symbol of interest.
Abstract:
Processing in a baseband processor is improved by estimating channelization code powers when processing received signals and reducing at least one of interference and noise power from the code power estimates. According to one embodiment of a wireless communication device such as a mobile phone or Local Area Network (LAN) adapter, the device comprises circuitry configured to receive a composite signal having contributions from a signal of interest and one or more interfering signals and a baseband processor. The baseband processor is configured to estimate channelization code powers for a channelization code associated with the signal of interest and one or more channelization codes associated with the one or more interfering signals. The baseband processor is also configured to reduce at least one of interference and noise power from the channelization code power estimates.
Abstract:
A method and system for probing in a wireless communication network are disclosed. According to one aspect, a method includes directing at least one low power node to transmit a probing signal, where the probing signal includes least one code. The method also includes receiving from a wireless terminal an indication of downlink channel quality. The channel quality is based on a power of the probing signal received by the wireless terminal. The method further includes selectively directing at least one of the at least one low power node to communicate with the wireless terminal. The selecting is based on the indication of downlink channel quality. ADDITIONAL DETAILS: Het-nets within UMTS (W-CDMA) environment; a combined cell concept (a.k.a. soft cell or shared cell) where the macro-cell (MBS) and the micro / pico /femto cells (LPN) within it share one single cell-id (a.k.a. CoMP Scenario 4) with Dynamic Point Selection (DPS), where a UE is served by the closest LPN only; DIFFERENCE: the MBS instructs the LPN's to broadcast a probing signal constituted by a pilot signal plus a scrambling plus a channelization codes; in return, the UE return a report to the MBS, which is used by the MBS to decide which LPN serves which UE.