Abstract:
Modified turbine components include an original turbine component comprising an outer wail enclosing an internal cavity, wherein the outer wall has an original portion removed therefrom to expose the internal cavity, and, an internally cooled supplemental element joined to the outer wall that replaces the original portion removed from the outer wall and re-encloses the internal cavity. The internally cooled supplemental element comprises one or more cooling channels that circulate air from the internal cavity through at least a portion of the internally cooled supplemental element.
Abstract:
The present application provides a hot gas path component for use with a gas turbine engine. The hot gas path component may include an airfoil, an internal cooling cavity, and a porous section created by a direct metal laser melting technique. The porous section may be built into the airfoil or the airfoil may be built separately and attached to the airfoil.
Abstract:
The present invention is an article containing internal cooling channels located near at least one surface. In an embodiment, the cooled article includes a base material, a first layer, and a second layer. Here, the first layer is bonded to the base material and the second layer is bonded to the first layer, wherein at least one closed cooling channel is disposed within a portion of the first layer and a portion of the second layer.
Abstract:
A thermal management article is disclosed including a substrate and a first coating disposed on the substrate. The first coating includes a first coating surface and at least one passageway disposed between the substrate and the first coating surface. The at least one passageway defines at least one fluid pathway. A method for forming a thermal management article is disclosed including attaching at least one passageway to a substrate. The at least one passageway includes a passageway wall having a wall thickness and defines at least one fluid pathway. A first coating is applied to the substrate and the passageway wall, forming a first coating surface. The at least one passageway is disposed between the substrate and the first coating surface.
Abstract:
Turbine components are disclosed including a component wall defining a constrained portion, a manifold having an impingement wall, and a post-impingement cavity disposed between the manifold and the component wall. The impingement wall includes a wall thickness and defines a plenum and a tapered portion. The tapered portion tapers toward the constrained portion and includes a plurality of impingement apertures and a wall inflection. The wall inflection is disposed proximal to the constrained portion, and the tapered portion is integrally formed as a single, continuous object. The wall inflection may include an inflection radius of less than about 3 times the wall thickness of the impingement wall, or the tapered portion may include a consolidated portion with the impingement wall extending across the plenum. A method for forming the turbine component is also disclosed, including forming the tapered portion as a single, continuous tapered portion by an additive manufacturing technique.
Abstract:
A system having an impingement sleeve configured to receive a cooling flow is provided. The impingement sleeve includes a column of ports extending from an outer surface of the impingement sleeve, wherein each port of the column of ports is configured to direct an impingement stream toward a heated structure, and each impingement stream includes a portion of the cooling flow. Further, one or more pins are disposed outside the outer surface relative to the cooling flow, wherein each pin of the one or more pins is coupled between pairs of ports of the column of ports.
Abstract:
The present application provides a method of producing a component. The method may include the steps of creating a dissolvable ceramic material mold in an additive manufacturing process, casting a metallic material in the dissolvable ceramic material mold, creating the component, and dissolving the dissolvable ceramic material. The component may be a turbine component.
Abstract:
This disclosure provides systems and tooling for cooling components during additive manufacturing. A build plate supports layers of powdered materials as they are positioned and selectively fused to create the component. The build plate defines a build surface and the build surface retracts in a working direction opposite a build direction for the component. At least one vertical cooling structure is provided perpendicular to the build plate and protruding from the build plate as the build surface retracts. The vertical cooling structure cools at least a portion of the component through unfused powdered materials between the vertical cooling structure and the component.
Abstract:
A cooled structure of a gas turbine engine has a main body with a leading edge, a trailing edge, a first side portion, a second side portion, and a cavity. A first set of cooling air micro-channels extends from the cavity and is arranged along the first side portion. A second set of cooling air micro-channels extends from the cavity and is arranged along the second side portion. The first and second set of cooling air micro-channels have turning portions positioned adjacent each other and interwoven exhaust ends originating from each opposing side micro-channel. Each interwoven exhaust end extends around the opposing turning portion and is configured to exhaust cooling air from a plurality of exhaust ports positioned generally radially outward from the turning portions.
Abstract:
Various embodiments of the disclosure include a turbomachine component. and methods of forming such a component. Some embodiments include a turbomachine component including: a first portion including at least one of a stainless steel or an alloy steel; and a second portion joined with the first portion, the second portion including a nickel alloy including an arced cooling feature extending therethrough, the second portion having a thermal expansion coefficient substantially similar to a thermal expansion coefficient of the first portion, wherein the arced cooling feature is located within the second portion to direct a portion of a coolant to a leakage area of the turbomachine component.