Abstract:
The disclosure includes a method of generating and presenting non-processed streaming audio data and non-processed streaming video data to a first viewer and a second viewer. The method may include presenting, via a commercial television display unit, the non-processed streaming video data to at least one of the commentator, the first viewer, and the second viewer. The method may include generating the non-processed streaming audio data related to the live event by the commentator, and transferring the non-processed streaming audio data via an Internet to the first viewer and the second viewer. Also, the method may include providing the first viewer and the second viewer with a capability to synchronize a video presentation time of the non-processed streaming video data with an audio presentation time of the non-processed streaming audio data.
Abstract:
A system can be used to indicate wear of a brake pad. The system can include a brake housing, a brake pad mechanically coupled to the brake housing, and a sensor mechanically coupled to the brake pad. The sensor can determine when the brake pad has been worn to a predetermined location by a rotating portion of a wheel. The system can also include an electronic module electrically coupled to the sensor and mechanically coupled to the brake housing. The electronic module can include a radio frequency antenna configured to wirelessly receive radio frequency energy from an external radio frequency transmitter, and an energy converter electrically coupled to the radio frequency antenna. As well, the electronic module can include an internal transmitter electrically coupled to the energy converter and the radio frequency antenna.
Abstract:
A system can be used to indicate wear of a brake pad. The system can include a brake housing, a brake pad mechanically coupled to the brake housing, and a sensor mechanically coupled to the brake pad. The sensor can determine when the brake pad has been worn to a predetermined location by a rotating portion of a wheel. The system can also include an electronic module electrically coupled to the sensor and mechanically coupled to the brake housing. The electronic module can include a radio frequency antenna configured to wirelessly receive radio frequency energy from an external radio frequency transmitter, and an energy converter electrically coupled to the radio frequency antenna. The electronic module can include an internal transmitter electrically coupled to the energy converter and the radio frequency antenna.
Abstract:
A new device and method for detecting the presence of living microorganisms in test samples are described. The device includes a container having at least one section transparent to light with an incubation zone defined in the container, the incubation zone containing growth media in which the sample is cultured. A detection zone containing a matrix composed of a polymeric material which is substantially transparent to light, and at least one indicator reagent sensitive to carbon dioxide gas generated by the microorganisms in the incubation zone is located in the transparent section of the matrix. The matrix is configured to facilitate penetration of external light aimed at the transparent section of the container and interaction of the external light with the indicator reagent to yield interactive light that escapes through the transparent section of the container, said interactive light is being indicative of the presence and/or concentration of the microorganisms.
Abstract:
A method and apparatus for proportional sampling of particulate material present in the exhaust gas emitted from an engine, in order to measure the mass of particulate material present in the exhaust gas, utilizes a mixing chamber (18) for mixing a portion of the exhaust gas with a dilution gas. A flow control (20) controls the flow rate of the portion of the exhaust gas as a function of exhaust gas flow by activating individual ones of a parallel array of solenoid valves (30), each defining a flow restriction (34).
Abstract:
A device and method simultaneously detects and enumerates two groups of microorganisms in a test sample, utilizing a single test container. In the container liquid growth media, a chromogenic substrate and a fluorogenic substrate are mixed with the test sample. The test container is incubated to allow bacterial growth and metabolism. Spectral changes of the substrates are dynamically detected using two external light sources aimed at a transparent section of the test container, and a single external photo detector. One light source operates in the visible band and the second in the long ultraviolet band. The two dynamic time patterns generated by the two substrates are analyzed in real time to determine the presence or absence of each microorganisms group and to enumerate their original concentrations in the test sample.
Abstract:
A monitoring device is described for multiple chemical reactions in multiple test containers. Each container contains chemical reagents and at least one fluorescence dye indicator capable of changing its fluorescent characteristics due to the chemical reaction. A single cylindrical ultraviolet (UV) cold cathode fluorescent (CCFL) tube is utilized. Multiple test containers (e.g., 8) are placed along the tube of the CCFL. The UV light emerging from the CCFL interacts with the dye indicator in each of the containers to yield interactive light beams that can be detected by signal photo sensors. In order to compensate for the light variations occurring along the tube, a reference photo sensor is placed for each container location along the tube to directly detect the signal from the CCFL. By normalizing the signal generated by the signal photo sensor to the signal of the corresponding reference photo sensor, the value of the normalized signal is independent of any light source variations along the tube due to CCFL aging and repetitious power switching. Consequently, the normalized signals only correspond to chemical variations occurring in the test containers.
Abstract:
A device and method simultaneously detects and enumerates two groups of microorganisms in a test sample, utilizing a single test container. In the container liquid growth media, a chromogenic substrate and a fluorogenic substrate are mixed with the test sample. The test container is incubated to allow bacterial growth and metabolism. Spectral changes of the substrates are dynamically detected using two external light sources aimed at a transparent section of the test container, and a single external photo detector. One light source operates in the visible band and the second in the long ultraviolet band. The two dynamic time patterns generated by the two substrates are analyzed in real time to determine the presence or absence of each microorganisms group and to enumerate their original concentrations in the test sample.
Abstract:
An instrumentation network data system that transmits periodically measured instrument parameters or data to workstations residing on a computer network. A laboratory workstation residing on the network periodically collects and processes data from the instruments at predetermined collection time-intervals. The laboratory workstation includes a buffering data file to store the analyzed data. A supervisor workstation residing on the network periodically accesses the analyzed data from the buffering data file at predetermined supervision-time intervals and updates a supervision data file in the supervisor working station with the analyzed data. At predetermined viewing-time intervals, the supervisor working station can transmit the analyzed data to at least one viewing workstation residing on the network for remote viewing of the analyzed data.
Abstract:
An apparatus and method for detecting at least one component gas in a sample includes a radiation source for providing radiation along an optical path in a pre-selected spectral band having at least one absorption line of the component gas to be detected and an optical detector for detecting radiation at the optical path. A sample chamber is positioned in the optical path between the source and the optical detector to contain a quantity of a sample gas. At least one gas cell enclosing an amount of the gas to be detected is fixedly positioned in the optical path in series with the gas chamber. A mathematical relationship is determined between the detected radiation and the concentration of a sample gas filling the sample chamber.