Abstract:
The present description relates to a gallium nitride transistor which includes at least one source/drain structure having low contact resistance between a 2D electron gas of the gallium nitride transistor and the source/drain structure. The low contact resistance may be a result of at least a portion of the source/drain structure being a single-crystal structure abutting the 2D electron gas. In one embodiment, the single-crystal structure is grown with a portion of a charge inducing layer of the gallium nitride transistor acting as a nucleation site.
Abstract:
A III-N semiconductor channel is formed on a III-N transition layer formed on a (111) or (110) surface of a silicon template structure, such as a fin sidewall. In embodiments, the silicon fin has a width comparable to the III-N epitaxial film thicknesses for a more compliant seeding layer, permitting lower defect density and/or reduced epitaxial film thickness. In embodiments, a transition layer is GaN and the semiconductor channel comprises Indium (In) to increase a conduction band offset from the silicon fin. In other embodiments, the fin is sacrificial and either removed or oxidized, or otherwise converted into a dielectric structure during transistor fabrication. In certain embodiments employing a sacrificial fin, the III-N transition layer and semiconductor channel is substantially pure GaN, permitting a breakdown voltage higher than would be sustainable in the presence of the silicon fin.
Abstract:
Techniques related to III-N transistors having self aligned gates, systems incorporating such transistors, and methods for forming them are discussed. Such transistors include a polarization layer between a raised source and a raised drain, a gate between the source and drain and over the polarization layer, and lateral epitaxial overgrowths over the source and drain and having and opening therebetween such that at least a portion of the gate adjacent to the polarization layer is aligned with the opening.
Abstract:
Embodiments include high electron mobility transistors (HEMT). In embodiments, a gate electrode is spaced apart by different distances from a source and drain semiconductor region to provide high breakdown voltage and low on-state resistance. In embodiments, self-alignment techniques are applied to form a dielectric liner in trenches and over an intervening mandrel to independently define a gate length, gate-source length, and gate-drain length with a single masking operation. In embodiments, III-N HEMTs include fluorine doped semiconductor barrier layers for threshold voltage tuning and/or enhancement mode operation.
Abstract:
Electronic device fins may be formed by epitaxially growing a first layer of material on a substrate surface at a bottom of a trench formed between sidewalls of shallow trench isolation (STI) regions. The trench height may be at least 1.5 times its width, and the first layer may fill less than the trench height. Then a second layer of material may be epitaxially grown on the first layer in the trench and over top surfaces of the STI regions. The second layer may have a second width extending over the trench and over portions of top surfaces of the STI regions. The second layer may then be patterned and etched to form a pair of electronic device fins over portions of the top surfaces of the STI regions, proximate to the trench. This process may avoid crystalline defects in the fins due to lattice mismatch in the layer interfaces.
Abstract:
Electronic device fins may be formed by epitaxially growing a first layer of material on a substrate surface at a bottom of a trench formed between sidewalls of shallow trench isolation (STI) regions. The trench height may be at least 1.5 times its width, and the first layer may fill less than the trench height. Then a second layer of material may be epitaxially grown on the first layer in the trench and over top surfaces of the STI regions. The second layer may have a second width extending over the trench and over portions of top surfaces of the STI regions. The second layer may then be patterned and etched to form a pair of electronic device fins over portions of the top surfaces of the STI regions, proximate to the trench. This process may avoid crystalline defects in the fins due to lattice mismatch in the layer interfaces.
Abstract:
A III-N semiconductor channel is formed on a III-N transition layer formed on a (111) or (110) surface of a silicon template structure, such as a fin sidewall. In embodiments, the silicon fin has a width comparable to the III-N epitaxial film thicknesses for a more compliant seeding layer, permitting lower defect density and/or reduced epitaxial film thickness. In embodiments, a transition layer is GaN and the semiconductor channel comprises Indium (In) to increase a conduction band offset from the silicon fin. In other embodiments, the fin is sacrificial and either removed or oxidized, or otherwise converted into a dielectric structure during transistor fabrication. In certain embodiments employing a sacrificial fin, the III-N transition layer and semiconductor channel is substantially pure GaN, permitting a breakdown voltage higher than would be sustainable in the presence of the silicon fin.
Abstract:
Embodiments include high electron mobility transistors (HEMT). In embodiments, a gate electrode is spaced apart by different distances from a source and drain semiconductor region to provide high breakdown voltage and low on-state resistance. In embodiments, self-alignment techniques are applied to form a dielectric liner in trenches and over an intervening mandrel to independently define a gate length, gate-source length, and gate-drain length with a single masking operation. In embodiments, III-N HEMTs include fluorine doped semiconductor barrier layers for threshold voltage tuning and/or enhancement mode operation.
Abstract:
A device including a III-N material is described. In an example, the device has terminal structure having a first group III-Nitride (III-N) material. The terminal structure has a central body and a first plurality of fins, and a second plurality of fins, opposite the first plurality of fins. A polarization charge inducing layer is above a first portion of the central body. A gate electrode is above the polarization charge inducing layer. The device further includes a source structure and a drain structure, each including impurity dopants, on opposite sides of the gate electrode and on the plurality of fins, and a source contact on the source structure and a drain contact on the drain structure.
Abstract:
Disclosed herein are IC structures, packages, and devices that include III-N transistor arrangements that may reduce nonlinearity of off-state capacitance of the III-N transistors. In various aspects, III-N transistor arrangements limit the extent of access regions of the transistors, compared to conventional implementations, which may limit the depletion of the access regions. Due to the limited extent of the depletion regions of a transistor, the off-state capacitance may exhibit less variability in values across different gate-source voltages and, hence, exhibit a more linear behavior during operation.