Abstract:
There is disclosed in one example a fiberoptic communication circuit for wavelength division multiplexing (WDM) communication, including: an incoming waveguide to receive an incoming WDM laser pulse; an intermediate slab including a demultiplexer circuit to isolate n discrete modes from the incoming WDM laser pulse; n outgoing waveguides to receive the n discrete modes, the outgoing waveguides including fully-etched rib-to-channel waveguides; and an array of n photodetectors to detect the n discrete modes.
Abstract:
Some embodiments of the present disclosure describe a tapered waveguide and a method of making the tapered waveguide, wherein the tapered waveguide comprises a first and a second waveguide, wherein the first and second waveguides overlap in a waveguide overlap area. The first and second waveguides have a different size in at least one dimension perpendicular to an intended direction of propagation of electromagnetic radiation through the tapered waveguide. Across the waveguide overlap area, one of the waveguides gradually transitions or tapers into the other.
Abstract:
Some embodiments of the present disclosure describe a tapered waveguide and a method of making the tapered waveguide, wherein the tapered waveguide comprises a first and a second waveguide, wherein the first and second waveguides overlap in a waveguide overlap area. The first and second waveguides have a different size in at least one dimension perpendicular to an intended direction of propagation of electromagnetic radiation through the tapered waveguide. Across the waveguide overlap area, one of the waveguides gradually transitions or tapers into the other.
Abstract:
Embodiments of the present disclosure are directed toward techniques and configurations for an optical device having a semiconductor layer to propagate light and a mirror disposed inside the semiconductor layer and having echelle grating reflective surface to substantially totally internally reflect the propagating light inputted by one or more input waveguides, to be received by one or more output waveguides. The waveguides may be disposed in the semiconductor layer under a determined angle relative to the mirror reflective surface. The determined angle may be equal to or greater than a total internal reflection angle corresponding to the interface, to provide substantially total internal reflection of light by the mirror. The mirror may be formed by an interface of the semiconductor layer comprising the mirror reflective surface and another medium filling the mirror, such as a dielectric. Other embodiments may be described and/or claimed.