Abstract:
Maximum likelihood bit-stream generation and detection techniques are provided using the M-algorithm and Infinite Impulse Response (IIR) filtering. The M-Algorithm is applied to a target input signal X to perform Maximum Likelihood Sequence Estimation on the target input signal X to produce a digital bit stream B, such that after filtering by an IIR filter, the produced digital stream Y produces an error signal satisfying one or more predefined requirements. The predefined requirements comprise, for example, a substantially minimum error. In an exemplary bit detection implementation, the target input signal X comprises an observed analog signal and the produced digital stream Y comprises a digitized output of a receive channel corresponding to a transmitted bit stream. In an exemplary bit stream generation implementation, the target input signal X comprises a desired transmit signal and the produced digital stream Y comprises an estimate of the desired transmit signal.
Abstract:
A chip-to-chip interface of a multi-chip module (MCM), including: bidirectional data links for transmitting data signals and a direction indicator bit, wherein the direction indicator bit switches a direction of the bidirectional data links in real-time; a clock link for transmitting a clock signal common to the bidirectional data links, wherein the data and clock links are comprised of conductive traces between the chips and laid out to be of substantially equal length; and a clock driver means having a digitally programmable clock signal delay.
Abstract:
Techniques are disclosed for a vector processor architecture that enables data interpolation in accordance with multiple dimensions, such as one-, two-, and three-dimensional linear interpolation. The vector processor architecture includes a vector processor and accompanying vector addressable memory that enable a simultaneous retrieval of multiple entries in the vector addressable memory to facilitate linear interpolation calculations. The vector processor architecture vastly increases the speed in which such calculations may occur compared to conventional processing architectures. Example implementations include the calculation of digital pre-distortion (DPD) coefficients for use with radio frequency (RF) transmitter chains to support multi-band applications.
Abstract:
An apparatus and method for in-phase/quadrature (I/Q) imbalance correction in a transceiver. The apparatus includes an I/Q imbalance correction circuit and a correction coefficient generation circuit. The I/Q imbalance correction circuit is configured to modify I/Q data in a frequency domain using correction coefficients to generate corrected I/Q data. The correction coefficient generation circuit is configured to generate the correction coefficients for the I/Q imbalance correction circuit based on the I/Q data and reference data.
Abstract:
A chip-to-chip interface of a multi-chip module (MCM), including: bidirectional data links for transmitting data signals and a direction indicator bit, wherein the direction indicator bit switches a direction of the bidirectional data links in real-time; a clock link for transmitting a clock signal common to the bidirectional data links, wherein the data and clock links are comprised of conductive traces between the chips and laid out to be of substantially equal length; and a clock driver means having a digitally programmable clock signal delay.
Abstract:
Techniques are disclosed for the use of a hybrid architecture that combines a programmable processing array and a hardware accelerator. The hybrid architecture dedicates the most computationally intensive blocks to the hardware accelerator, while maintaining flexibility for additional computations to be performed by the programmable processing array. An interface is also described for coupling the processing array to the hardware accelerator, which achieves a division of functionality and connects the programmable processing array components to the hardware accelerator components without sacrificing flexibility. This results in a balance between power/area and flexibility.
Abstract:
Techniques are disclosed for the use of a hybrid architecture that combines a programmable processing array and a hardware accelerator. The hybrid architecture dedicates the most computationally intensive blocks to the hardware accelerator, which may be implemented for the computation of pre-distortion (DPD) coefficients while maintaining flexibility for additional DPD computations to be performed by the programmable processing array. An interface is also described for coupling the processing array to the hardware accelerator, which achieves a division of functionality and connects the programmable processing array components to the hardware accelerator components without sacrificing flexibility. This results in a balance between power/area and flexibility.
Abstract:
Techniques are disclosed for reducing or eliminating loop overhead caused by function calls in processors that form part of a pipeline architecture. The processors in the pipeline process data blocks in an iterative fashion, with each processor in the pipeline completing one of several iterations associated with a processing loop for a commonly-executed function. The described techniques leverage the use of message passing for pipelined processors to enable an upstream processor to signal to a downstream processor when processing has been completed, and thus a data block is ready for further processing in accordance with the next loop processing iteration. The described techniques facilitate a zero loop overhead architecture, enable continuous data block processing, and allow the processing pipeline to function indefinitely within the main body of the processing loop associated with the commonly-executed function where efficiency is greatest.
Abstract:
A time-interleaved Analog-to-Digital Converter, ADC, system is provided. The time-inter-leaved ADC system includes time-interleaved first and second ADC circuits and a switching circuit. The switching circuit is configured to selectively supply an analog input signal for digitization to at least one of the first ADC circuit, the second ADC circuit or ground, and to selectively supply an analog calibration signal to at least one of the first ADC circuit, the second ADC circuit or ground. Further, the time-interleaved ADC system includes an output circuit configured to selectively generate, based on least one of a first digital signal output by the first ADC circuit and a second digital signal output by the second ADC circuit, a digital output signal.
Abstract:
A digital-to-analog converter is provided. The digital-to-analog converter comprises an input configured to receiving a first digital control code for controlling a plurality of digital-to-analog converter cells. Further, the digital-to-analog converter comprises a code converter circuit configured to converter the first digital control code to a second digital control code. Further, the digital-to-analog converter comprises a shift code generation circuit configured to generate a shift code based on a code difference between the first digital control code and a third digital control code. The digital-to-analog converter additionally comprises a bit-shifter circuit configured to bit-shift the second digital control code based on the shift code in order to obtain a modified second digital control code. The digital-to-analog converter comprises a cell activation circuit configured to selectively activate one or more of the plurality of digital-to-analog converter cells based on the modified second digital control code. Each activated digital-to-analog converter cell is configured to output a respective cell output signal. Further, the digital-to-analog converter comprises an output configured to output an analog output signal based on the cell output signals.