Abstract:
Se brinda una tubería de acero sin costura de alta resistencia y de baja aleación para productos tubulares de la industria del petróleo que tiene una excelente resistencia al SSC. Es una tubería de acero sin costura de alta resistencia y de baja aleación para productos tubulares de la industria del petróleo, que comprende una composición que contiene, en términos de % en masa, C: 0,25 al 0,31%, Si: 0,01 al 0,35%, Mn: 0,45 al 0,70%, P: 0,010% o menos, S: 0,001% o menos, O: 0,0015% o menos, Al: 0,015 al 0,080%, Cu: 0,02 al 0,09%, Cr: 0,8 al 1,5%, Mo: 1,1 al 1,6%, V: 0,01 al 0,06%, Nb: 0,005 al 0,015%, B: 0,0015 al 0,0030%, Ti: 0,005 al 0,020%, y N: 0,005% o menos, y el valor de la relación entre el contenido de Ti y el contenido de N (Ti/N) oscila entre 3,0 y 4,0, siendo el resto Fe e impurezas inevitables, la tubería de acero tiene un valor (s₀,₇/s₀,₄), como relación entre el esfuerzo a una deformación del 0,7% y el esfuerzo a una deformación del 0,4% en una curva de esfuerzo-deformación, de 1,02 o menos y un límite elástico de 861 MPa o más.
Abstract:
En la técnica convencional, es difícil ajustar de forma estable la resistencia de un tubo de acero de pared gruesa a una resistencia objetivo de 95 a 140 ksi (= TS: 655 a 965 MPa) mediante una operación de Q-T. Específicamente, un método para la fabricación de un tubo de acero de pared gruesa incluye una etapa de enfriamiento en la cual un tubo de acero, con un espesor de pared de 1/2 pulgada o más, que se ha calentado al intervalo gamma (es decir, región austenítica) se sumerge en agua mientras se soporta y se hace girar el tubo de acero alrededor del eje de tubo, una corriente axial la cual es un flujo de agua en la dirección del eje de tubo se aplica a la superficie interior del tubo de acero bajo rotación en el agua, y una corriente de impacto la cual es un flujo de agua que choca sobre la superficie exterior del tubo se aplica a la superficie exterior del tubo de acero bajo rotación en el agua. La rotación se realiza a una velocidad circunferencial de tubo de 4 m/s o más, la aplicación de la corriente axial y la corriente de impacto se inicia dentro de 1.1 s después de que todo el tubo de acero se sumerge, y se continúa hasta que la temperatura del tubo de acero se reduce a 150 °C o inferior, la velocidad de flujo de tubo de la corriente axial se establece en 7 m/s o más, y la velocidad de flujo de descarga de la corriente de impacto se establece en 9 m/s o más.
Abstract:
A seamless steel pipe that has a composition which contains, in terms of mass%, 0.15-0.50% C, 0.1-1.0% Si, 0.3-1.0% Mn, up to 0.015% P, up to 0.005% S, 0.01-0.1% Al, up to 0.01% N, 0.1-1.7% Cr, 0.40-1.1% Mo, 0.01-0.12% V, 0.01-0.08% Nb, up to 0.03% Ti, and 0.0005-0.003% B and that has a structure which includes a tempered martensite phase as the main phase and which contains prior-austenite grains having a grain size number of 8.5 or larger. The steel pipe has such a hardness distribution that the steel has a hardness HV10 of 295 or less at each of an inner-side point located in the region apart from the inner surface of the pipe at a distance of 2.54-3.81 mm therefrom, an outer-side point located apart from the outer surface of the pipe at the same distance therefrom, and a point located at the center of the wall thickness, the points being located at each of four positions apart from each other at intervals of 90° along in the circumferential direction. Thus, the seamless steel pipe has a high strength in the 110-ksi class (yield strength of 758 MPa or higher) and excellent resistance to sulfide stress cracking (SSC). The composition may further contain at least one of Cu, W, Ni, and Ca.
Abstract:
Disclosed is a high-strength seamless steel pipe, which has excellent sulfide stress cracking resistance (SSC resistance), for use in oil wells. Specifically the seamless steel pipe has a composition containing, by mass %: C: 0.15-0.50%, Si: 0.1-1.0%, Mn: 0.3-1.0%, P: 0.015% or less, S: 0.005% or less, Al: 0.01-0.1% or less, N: 0.01% or less, Cr: 0.1-1.7%, Mo: 0.40-1.1%, V: 0.01-0.08%, Nb: 0.01-0.08%, B: 0.0005-0.003% and optionally Cu: 0.03-1.0%; where 0.40% or more of solute Mo is included within the aforementioned Mo; and a composition formed by the dispersal of 0.06 mass % or more of roughly particulate M2C precipitates, which has a tempered martensite main phase and has prior austenite grains with a grain number of 8.5 or greater.
Abstract:
The high strength steel sheet consists essentially of 0. 05 to 0.15% C, 0.5% or less Si, 1.00 to 2.00% Mn, 0.09% or less P, 0.01% or less S, 0.005% or less N, 0.01 to 0.1% Sol.Al, and balance of Fe and inevitable impurities; and contains 60% or more polygonal ferrite by volume, and 5 to 30% martensite by volume. The steel sheet is manufactured by the steps of: casting a slab having the specified composition; hot-rolling the slab at Ar3 point or more temperature; beginning cooling the hot-rolled steel sheet within 2 seconds after completing the hot-rolling to a temperature of from 750 DEG C to 600 DEG C at a cooling rate of 150 DEG C/s or more; holding the cooled steel sheet at a temperature between 750 DEG C and 600 DEG C for 2 to 15 seconds; cooling the steel sheet at a cooling rate of 20 DEG C/s or more; and coiling the cooled steel sheet at a temperature of 400 DEG C or less.
Abstract:
The high strength steel sheet consists essentially of 0.05 to 0.15% C, 0.5% or less Si, 1.00 to 2.00% Mn, 0.09% or less P, 0.01% or less S, 0.005% or less N, 0.01 to 0.1% Sol.Al, and balance of Fe and inevitable impurities; and contains 60% or more polygonal ferrite by volume, and 5 to 30% martensite by volume. The steel sheet is manufactured by the steps of: casting a slab having the specified composition; hot-rolling the slab at Ar3 point or more temperature; beginning cooling the hot-rolled steel sheet within 2 seconds after completing the hot-rolling to a temperature of from 750.degree.C to 600.degree.C at a cooling rate of 150.degree.C/s or mor e; holding the cooled steel sheet at a temperature between 750.degree.C and 600.degree. C for 2 to 15 seconds; cooling the steel sheet at a cooling rate of 20.degree.C/s or more; and coiling the cooled steel sheet at a temperature of 400.degree.C or less.
Abstract:
Provided is a high-strength seamless steel tube, having excellent resistance to sulfide stress cracking (SSC resistance), for oil wells. In particular, the seamless steel tube contains 0.15% to 0.50% C, 0.1% to 1.0% Si, 0.3% to 1.0% Mn, 0.015% or less P, 0.005% or less S, 0.01% to 0.1% Al, 0.01% or less N, 0.1% to 1.7% Cr, 0.4% to 1.1% Mo, 0.01% to 0.12% V, 0.01% to 0.08% Nb, and 0.0005% to 0.003% B or further contains 0.03% to 1.0% Cu on a mass basis and has a microstructure which has a composition containing 0.40% or more solute Mo and a tempered martensite phase that is a main phase and which contains prior-austenite grains with a grain size number of 8.5 or more and 0.06% by mass or more of a dispersed M 2 C-type precipitate with substantially a particulate shape.
Abstract:
[Solution to Problem] On a percent by mass basis, C: 0.05% or less, Si: 0.5% or less, Mn: 0.15% to 1.0%, P: 0.030% or less, S: 0.005% or less, Cr: 15.5% to 17.5%, Ni: 3.0% to 6.0%, Mo: 1.5% to 5.0%, Cu: 4.0% or less, W: 0.1% to 2.5%, and N: 0.15% or less are contained in such a way that -5.9 x (7.82 + 27C - 0.91Si + 0.21Mn - 0.9Cr + Ni - 1.1Mo + 0.2Cu + 11N) ‰¥ 13.0 is satisfied. Consequently, a high-strength stainless steel seamless tube or pipe having excellent corrosion resistance can be produced, where excellent carbon dioxide gas corrosion resistance at high-temperature environments containing CO 2 and Cl - at high temperatures up to 200°C and excellent sulfide stress cracking resistance and excellent sulfide stress corrosion cracking resistance at corrosive environments further containing H 2 S are ensured in combination. In this regard, V, and/or Al, and/or at least one selected from the group consisting of Nb, Ti, Zr, and B, and/or at least one selected from the group consisting of REM, Ca, and Sn may be further contained.
Abstract:
Provided is a high-strength stainless steel tube for oil country tubular goods having a wall thickness of more than 25.4 mm and a high strength of a 110 ksi (758 MPa) grade yield stress or more with excellent toughness and excellent corrosion resistance. A steel material having a chemical composition containing, by mass%, C: 0.005% or more and 0.06% or less, Si: 0.05% or more and 0.5% or less, Mn: 0.2% or more and 1.8% or less, Cr: 15.5% or more and 18.0% or less, Ni: 1.5% or more and 5.0% or less, V: 0.02% or more and 0.2% or less, Al: 0.002% or more and 0.05% or less, N: 0.01% or more and 0.15% or less, O: 0.006% or less, and further containing one or more of Mo: 1.0% or more and 3.5% or less, W: 3.0% or less and Cu: 3.5% or less, in which the relational expressions Cr+0.65Ni+0.60Mo+0.30W+0.55Cu-20C‰¥19.5 and Cr+Mo+0.50W+0.30Si-43.5C-0.4Mn-Ni-0.3Cu-9N‰¥11.5 are satisfied, is made into a seamless steel tube by performing heating and hot rolling. The hot rolling is performed under conditions such that the total rolling reduction in a temperature range of 1100°C to 900°C is 30% or more. After the hot rolling has been performed, cooling is performed at a cooling rate equal to or more than an air-cooling rate, and, further, quenching-tempering is performed. With this method, a high-strength and high-toughness seamless steel tube having a strength of 110 ksi (758 MPa) or more and a toughness of 40 J or more in terms of vE- 10 despite having a thick wall and excellent corrosion resistance even in a high-temperature corrosion environment having a temperature of 230°C and containing CO 2 and Cl - can be stably manufactured.